scholarly journals Tracking Control of Unmanned Aerial Vehicle for Power Line Inspection

2021 ◽  
Author(s):  
Kenta Takaya ◽  
Hiroshi Ohta ◽  
Keishi Shibayama ◽  
Valeri Kroumov

This work presents some results about power transmission line tracking control and a full autonomous inspection using a quadrotor helicopter. The presented in this paper power line autonomous inspection allows detecting power line defects caused by thunderstorms, corrosion, insulator malfunctions, and same time monitoring of vegetation under the power line corridor. Traditional inspection is performed by helicopters equipped with high-resolution cameras or by direct visual examination carried out by highly skilled staff climbing over de-energized power lines. However, the visual inspection is time-expensive and costly. Moreover, due to regulatory constraints, the helicopters cannot cover narrow mountainous areas. Unmanned aerial vehicles (UAV) are an attractive alternative for power line inspection. In this work, a mathematical model for the quadrotor helicopter used in the autonomous inspection is presented. The model is successfully evaluated through simulations and flight experiments. Next, the construction of a quadrotor helicopter system and its application to power line autonomous inspection is introduced. Simulation and experimental results demonstrate the efficiency and applicability of that system. The results of this research are in the process of implementation for regular inspection of electrical transmission lines.

2020 ◽  
Vol 59 (1) ◽  
pp. 606-618
Author(s):  
Mohammad Akbar ◽  
Basharat Mehmood

AbstractHigh-voltage direct current (HVDC) transmission is known as green-energy transfer technology and has recently become an attractive alternative of high-voltage alternating current (HVAC) due to its high-power transmission capability and lower power loss. Use of composite insulators on direct current (DC) transmission lines experienced rapid growth in recent years due to their high hydrophobicity and better performance in contaminated environment than conventional ceramic insulators. During their service operation on DC lines, insulators are prone to more accumulation of contaminants due to unidirectional electric field. The contaminants under wet conditions allow leakage current to flow on the insulator surface. Being organic in nature, polymeric insulators have a tendency to age under the combined effects of electrical and environmental stresses. To fully understand the long-term aging performance of DC composite insulators, a detailed survey was considered necessary. Towards that end, this paper critically summarizes worldwide experience of aging performance of composite insulators in the field as well as in laboratory conditions.


Author(s):  
Alexandros Zormpas ◽  
Konstantia Moirogiorgou ◽  
Kostas Kalaitzakis ◽  
George A. Plokamakis ◽  
Panayotis Partsinevelos ◽  
...  

Author(s):  
CH. CHENGAIAH ◽  
R.V.S. SATYANARAYANA ◽  
G.V. MARUTHESWAR MARUTHESWAR

The power transfer capability of electric transmission lines are usually limited by large signals ability. Economic factors such as the high cost of long lines and revenue from the delivery of additional power gives strong intensive to explore all economically and technically feasible means of raising the stability limit. On the other hand, the development of effective ways to use transmission systems at their maximum thermal capability. Fast progression in the field of power electronics has already started to influence the power industry. This is one direct out come of the concept of FACTS aspects, which has become feasible due to the improvement realized in power electronic devices in principle the FACTS devices should provide fast control of active and reactive power through a transmission line. The UPFC is a member of the FACTS family with very attractive features. This device can independently control many parameters. This device offers an alternative mean to mitigate transmission system oscillations. It is an important question is the selection of the input signals and the adopted control strategy for this device in order to damp power oscillations in an effective and robust manner. The UPFC parameters can be controlled in order to achieve the maximal desire effect in solving first swing stability problem. This problem appears for bulky power transmission systems with long transmission lines. In this paper a MATLAB Simulink Model is considered with UPFC device to evaluate the performance of Electrical Transmission System of 22 kV and 33kV lines. In the simulation study, the UPFC facilitates the real time control and dynamic compensation of AC transmission system. The dynamic simulation is carried out in conjunction with the N-R power flow solution sequence. The updated voltages at each N-R iterative step are interpreted as dynamic variables. The relevant variables are input to the UPFC controllers.


2020 ◽  
Vol 17 ◽  
pp. 105-108
Author(s):  
Marko Kaasik ◽  
Sander Mirme

Abstract. The electric power that can be transmitted via high-voltage transmission lines is limited by the Joule heating of the conductors. In the case of coastal wind farms, the wind that produces power simultaneously contributes to the cooling of high-voltage overhead conductors. Ideally this would allow for increased power transmission or decreased dimensions and cost of the conductor wires. In this study we investigate how well the wind speed in coastal wind farms is correlated with wind along a 75 km long 330 kW power line towards inland. It is found that correlations between wind speed in coastal wind farms at turbine height and conductor-level (10 m) are remarkably lower (R=0.39–0.64) than between wind farms at distances up to 100 km from each other (R=0.76–0.97). Dense mixed forest surrounding the power line reduces both local wind speed and the correlations with coastal higher-level wind, thus making the cooling effect less reliable.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Zishu Gao ◽  
Guodong Yang ◽  
En Li ◽  
Tianyu Shen ◽  
Zhe Wang ◽  
...  

There are a large number of insulators on the transmission line, and insulator damage will have a major impact on power supply security. Image-based segmentation of the insulators in the power transmission lines is a premise and also a critical task for power line inspection. In this paper, a modified conditional generative adversarial network for insulator pixel-level segmentation is proposed. The generator is reconstructed by encoder-decoder layers with asymmetric convolution kernel which can simplify the network complexity and extract more kinds of feature information. The discriminator is composed of a fully convolutional network based on patchGAN and learns the loss to train the generator. It is verified in experiments that the proposed method has better performances on mIoU and computational efficiency than Pix2pix, SegNet, and other state-of-the-art networks.


Author(s):  
G. A. Bol'shanin ◽  
M. P. Plotnikov ◽  
M. A. Shevchenko

To determine the results of the transmission of electrical energy through the power line from the source to the consumer, it is necessary to have accurate information about the parameters of such line. Determining these parameters for operating lines with a minimum error is quite a laborious process. But if a researcher is interested only in voltages and currents at the end and at the beginning of a homogeneous section of a three-wire transmission line, then it is sufficient to use the theory of multipoles. In particular, the theory of eight-poles. The article presents the method of experimental determination of the longitudinal and transverse parameters of the studied transmission line. The study used the methods of natural experiment using an appropriate fleet of electrical devices, and methods of indirect measurement of the desired parameters. The experiment consists of six stages; on the basis of the obtained data, it becomes possible to determine the numerical values of the main parameters of the studied section of power transmission lines, with which it is possible to establish a quantitative relationship between the input and output characteristics of electrical energy. In addition, the described method, in principle, can be applied to the analysis of active eight-terminal networks of a similar design. This means that the proposed methodology can provide a comprehensive analysis of the studied object and will help to identify the parameters of an overhead power line at the construction stage or for its connection to the consumer. The article presents the experimental setup scheme, describes the experimental methods, and estimates the error of the calculation results.


2018 ◽  
Vol 36 (4) ◽  
pp. 295-314 ◽  
Author(s):  
JiaZheng Lu ◽  
Bao-Hui Chen ◽  
Zhen Fang ◽  
Jianping Hu ◽  
Bowen Wang ◽  
...  

Wildfires near transmission lines are important disasters that affect power transmission. Water mist is a highly efficient method for suppressing wildfires near electrical transmission lines, where it avoids line-tripping to ensure the safety of the grid. However, few studies have investigated the electrical safety during the water mist extinguishing process, including the risk of tripping transmission lines and the shock hazard for users. In this study, we systematically studied the influence of the gap distance and the electric conductivity of the water solution on the insulation characteristics of water mist with a Dv0.99 diameter of the droplets of ca. 500 µm, including the breakdown voltage and leakage current. Furthermore, we investigated the effect of water mist on the development of a long-gap discharge, and the insulation mechanism of water mist was also considered. Finally, water mist with multi-component additives was employed for suppressing wildfires near transmission lines in China, and we demonstrated the effectiveness of this method based on the reduction of line-tripping accidents caused by wildfires near transmission lines.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Juliana Dániel-Ferreira ◽  
Riccardo Bommarco ◽  
Jörgen Wissman ◽  
Erik Öckinger

AbstractHabitats along linear infrastructure, such as roads and electrical transmission lines, can have high local biodiversity. To determine whether these habitats also contribute to landscape-scale biodiversity, we estimated species richness, evenness and phylogenetic diversity of plant, butterfly and bumblebee communities in 32 km2 landscapes with or without power line corridors, and with contrasting areas of road verges. Landscapes with power line corridors had on average six more plant species than landscapes without power lines, but there was no such effect for butterflies and bumblebees. Plant communities displayed considerable evenness in species abundances both in landscapes with and without power lines and high and low road verge densities. We hypothesize that the higher number of plant species in landscapes with power line corridors is due to these landscapes having a higher extinction debt than the landscapes without power line corridors, such that plant diversity is declining slower in landscapes with power lines. This calls for targeted conservation actions in semi-natural grasslands within landscapes with power line corridors to maintain biodiversity and prevent imminent population extinctions.


2014 ◽  
Vol 704 ◽  
pp. 227-232
Author(s):  
Wei Zhen Cheng ◽  
Man Tao Xu ◽  
Wu Chao Cheng

One of the major threats to the safe and normal operation of the power transmission lines is the external force or intrusion incurred by construction trucks. Especially for the urban area, construction of truck cranes is increasingly becoming a leading cause to the damages of power transmission lines. However, the conventional monitoring method for protecting power transmission lines is to conduct a routine inspection or patrol on the transmission line network periodically, which is time-consuming and laborious. In this paper we propose a video surveillance system for automatic tracking the dangerous strength such as construction cranes. The criterion of context formation aims to detect the jib of crane and compute its extension angle. Once the crane is parked over a certain period of time, or the jib extension angle exceeds predefined thresholds, warning messages will be sent to power line supervisors. The experiments show that the system is able to achieve automatic detection of truck cranes and protect transmission lines from their careless constructions.


Sign in / Sign up

Export Citation Format

Share Document