Using ICT and Energy Technologies for Improving Global Engineering Education

2021 ◽  
Author(s):  
Pritpal Singh

Information, communication, and energy technologies have the potential to improve engineering education worldwide. With the availability of low cost, open-source microcontrollers/microcomputers, such as the Arduino and Raspberry Pi platforms, and a wide variety of sensors and communication tools, a range of engineering applications and innovations may be developed at a low price. Furthermore, the cost of solar panels and LED lamps have also dropped dramatically in recent years and these also allow for improved energy support in regions that lack energy access or require autonomous monitoring/processing. Also, low-cost 3D printers are now widely available for making simple prototypes of hardware. Finally, low-cost educational software tools have also become available. Combining these technologies enables engineering education to be brought into traditionally inaccessible communities in the world. In this book chapter, examples of how ICT and energy technologies are being used to teach students engineering technologies in underserved communities will be described. Application areas to be described will include environmental monitoring, clean water systems, and remote learning.

2014 ◽  
pp. 319-346
Author(s):  
Salahuddin Qazi ◽  
Farhan A. Qazi

Solar radiation is plentiful and a clean source of power. However, despite the first practical use of silicon based solar cell more than 50 years ago, it has not been exploited to its full potential due to the high cost of electrical conversion on a per Watt basis. Many new kinds of photovoltaic cells such as multi-junction solar cells dye –sensitized solar cells and organic solar cell incorporating element of nanotechnology have been proposed to increase the efficiency and reduce the cost. Nanotechnology, in the form of quantum dots, nanorods, nanotubes, and grapheme, has been shown to enhance absorption of sunlight, makes low cost flexible solar panels and increases the efficiency of photovoltaic cells. The chapter reviews the state of current photovoltaic cells and challenges it presents. It also discusses the use of nanotechnology in the application of photovoltaic cells and future research directions to improve the efficiency of solar cells and reduce the cost.


Author(s):  
Salahuddin Qazi ◽  
Farhan A. Qazi

Solar radiation is plentiful and a clean source of power. However, despite the first practical use of silicon based solar cell more than 50 years ago, it has not been exploited to its full potential due to the high cost of electrical conversion on a per Watt basis. Many new kinds of photovoltaic cells such as multi-junction solar cells dye –sensitized solar cells and organic solar cell incorporating element of nanotechnology have been proposed to increase the efficiency and reduce the cost. Nanotechnology, in the form of quantum dots, nanorods, nanotubes, and grapheme, has been shown to enhance absorption of sunlight, makes low cost flexible solar panels and increases the efficiency of photovoltaic cells. The chapter reviews the state of current photovoltaic cells and challenges it presents. It also discusses the use of nanotechnology in the application of photovoltaic cells and future research directions to improve the efficiency of solar cells and reduce the cost.


2015 ◽  
Vol 11 (4) ◽  
pp. 39 ◽  
Author(s):  
Dario Assante ◽  
Massimo Tronconi

Remote laboratories are increasingly being used in academic courses, especially in science and engineering. New control systems allow the development of even complex experiments with a low cost. In this paper we present a remote laboratory that reproduces a small-scale photovoltaic system, including a solar panels and lights, a charge controller, a battery and a dummy load. A Raspberry PI microcontroller is used to send the different inputs to the laboratory, handling commands, measuring some electrical quantities and provide remote access via the web. The laboratory, developed with the involvement of graduating students, will be used in the Master courses of electrical engineering. Particular attention has been paid on the development of hardware and software, to use the developed laboratory as a model for the realization of other experiments.


2020 ◽  
Vol 12 (6) ◽  
pp. 475-489
Author(s):  
Bahman A. Sassani ◽  
Noreen Jamil ◽  
Maria Villapol ◽  
M. Abbas Malik ◽  
Sreenivas Sremath Tirumala

Internet of Things (IoT) based systems have revolutionised the way real world systems are inter-connected through internet. At present the application of IoT based systems is extend to real time detection and warning system. However, cost has been a major factor for development and implementation of IoT systems. Considering the cost, ease of implementation, this paper proposes a low cost yet efficient IoT system called FireNot for warning and alerting fire incidents. FireNot is a cloud based system that uses sensors (hardware) to detect fire and alert the user through internet and is maintained and monitored using a simple Android app. The FireNot system uses Raspberry Pi programmed through Python language and utilises Google API for location detection. The FireNot system is also intended to provide an expandable platform for additional daily monitoring tasks and more importunately, resiliency against most cyber-attacks and hi-jacking that targets IoT-based system lacked in most of similar IoT-based designs. This paper practically demonstrates the FireNot system through extensive testing on various operations and the FireNot system is proven to be efficient.


Author(s):  
Hassan Ali Alajmi ◽  
Raid Rashid Ali Alsaidi ◽  
Omar Abdullah Sultan AL-shibli ◽  
Senthil Ramadoss

Managing the energy efficient and conserving it intelligently for appliances is very much important. On the other side, it may be possible events mistake cause while reading on energy meter, monitoring and keeping track of your electricity consumption for verification is a tedious task today. Our main objective of measuring the power consumption at homes using IOT with raspberry pi during period time, which can be controlled as well monitored through the raspberry pi across the IOT. We used Python programming language to control raspberry pi. It's based on raspbian which is operating system for all models of the raspberry Pi that subject to linux system. As we say before raspberry pi has inputs and we use it for connecting the supply, energy meter and load such as a lamp or Drill. The energy meter is connected to the raspberry pi. This allows user to easily check the energy usage along with the cost charged online using a simple web application connecting to Wi-Fi. Thus, the energy meter monitoring system allows consumer to effectively monitor electricity meter readings and bill amount in an easy way. It presents a low cost and flexible energy meter monitoring system using IOT. In addition, we use camera which is called camera pi. Camera pi takes picture from meter reading and communicates to consumer via email. All information on the energy meter screen will be taken by raspberry pi module. Using this data, the raspberry pi will calculate the bill amount then send to the consumer by email. Finally, this project will help for the proper and accurate reading of the billing process automatically. Also, it enables consumer to save the money for a long time. This technology offers new and exciting opportunity to reduce the work of workers.


2020 ◽  
Author(s):  
John P. Efromson ◽  
Shuai Li ◽  
Michael D. Lynch

AbstractAutosampling from bioreactors reduces error, increases reproducibility and offers improved aseptic handling when compared to manual sampling. Additionally, autosampling greatly decreases the hands-on time required for a bioreactor experiment and enables sampling 24 hrs a day. We have designed, built and tested a low cost, open source, automated bioreactor sampling system, the BioSamplr. The BioSamplr can take up to ten samples from a bioreactor at a desired sample interval and cools them to a desired temperature. The device, assembled from low cost and 3D printed components, is controlled wirelessly by a Raspberry Pi, and records all sampling data to a log file. The cost and accessibility of the BioSamplr make it useful for laboratories without access to more expensive and complex autosampling systems.


Author(s):  
Tiago da Silva Almeida

This paper presents a low-cost prototype for lectures in public universities based on Raspberry Pi. It is described how to connect and configure the prototype using an infrared remote control. Technologies applied in education are widely explored in recent researches and can be held to lower the cost. The proposed prototype is 86\% cheaper on average (compared to ordinary computer) and can be used for automation of the classrooms besides lectures. For example, the prototype can be additionally used to access control, environment monitoring, and management of the environment utilization by the users.


2012 ◽  
Vol 6 (5) ◽  
pp. 618-626 ◽  
Author(s):  
Olaf Diegel ◽  
◽  
Andrew Withell ◽  
Deon de Beer ◽  
Johan Potgieter ◽  
...  

This research was initiated to develop low cost powders that could be used on 3D printers. The paper describes experiments that were undertaken with different compositions of clay-based powders, and different print saturation settings. An unexpected sideeffect of printing ceramic parts was the ability to control the part porosity by varying the powder recipe and print parameters. The cost of clay-based powder was, depending on the specific ingredients used, around US$2.00/Kg.


Author(s):  
Abderrahmane Adda Benattia ◽  
Mohamed Moussa ◽  
Abdelhalim Benachenhou ◽  
Abdelhamid Mebrouka

<p class="0abstract">Most of currently remote laboratories implementations include interactive experimentation. In this case, students use real devices and equipment to perform real experiments, which need some flexibility of interaction with the hardware platform. The hardware platform is composed of a Raspberry Pi as a lab server, a switching board (SB), a practical work circuit board and some measurement instruments. The SB is used to make configuration of experimentation by establishing connection between the practical work circuit and measurement instruments. During the experimentation process, students change the setup using a web page. In the background, the hardware configuration is realized using SB, which is controlled by the lab server. The purpose of this work is to develop a new SB in order to provide more possibilities, interaction flexibility with the hardware platform, ease of use, improve performance in response time and finally reduce the cost of the hardware. The SB is based on switches instead of relays. This board can be plugged directly on a Raspberry Pi to facilitate the assembly. It extends the “SPI” bus in order to control some electronic components such as digital potentiometers. Its use is illustrated with a circuit with multiple combinations.</p>


Geophysics ◽  
2021 ◽  
pp. 1-64
Author(s):  
Dana Sirota ◽  
Jeffrey Shragge ◽  
Richard Krahenbuhl ◽  
Andrei Swidinsky ◽  
John Bradford ◽  
...  

Insufficient access to safe drinking water is one of the most challenging global humanitarian issues. The development of low-cost microcontrollers and the widespread availability of cheap electronics components raise the possibility of developing and using low-cost geophysical instrumentation with open-source designs and software solutions to circumvent geophysical instrumentation capital cost issues. To these ends, we alter an existing low-cost DC resistivity meter design and develop an optional modular Raspberry Pi data-logging system to improve the unit's functionality, usability and to ensure data integrity. Numerical modeling and physical testing demonstrates that the system is more robust than previously published low-cost designs and works in a more diverse range of geological scenarios - especially conductive environments. Our instrument was tested in a Geoscientists Without Borders (GWB) project jointly run between researchers from Colorado School of Mines (CSM) and Universit矤'Abomey-Calavi (UAC), Cotonou, Benin. A key project component involved CSM and UAC students constructing and validating two low-cost DC resistivity meters and then using these instruments for fieldwork aimed at better characterizing and monitoring the health of a local aquifer used as a groundwater source for communities in the Cotonou region. The low-cost instruments were successfully used alongside a commercial resistivity meter to acquire data for 2D inversion of aquifer hydrostratigraphy , indicating the presence of a clay-sand contact. The cost of the redesigned instrument and data logger respectively are $177 and $108 (in 2021 USD) with future cost reductions possible, which are fractions of the price of commercial resistivity meters.


Sign in / Sign up

Export Citation Format

Share Document