scholarly journals Improve Energy Efficiency in Surface Mines Using Artificial Intelligence

2021 ◽  
Author(s):  
Ali Soofastaei ◽  
Milad Fouladgar

This chapter demonstrates the practical application of artificial intelligence (AI) to improve energy efficiency in surface mines. The suggested AI approach has been applied in two different mine sites in Australia and Iran, and the achieved results have been promising. Mobile equipment in mine sites consumes a massive amount of energy, and the main part of this energy is provided by diesel. The critical diesel consumers in surface mines are haul trucks, the huge machines that move mine materials in the mine sites. There are many effective parameters on haul trucks’ fuel consumption. AI models can help mine managers to predict and minimize haul truck energy consumption and consequently reduce the greenhouse gas emission generated by these trucks. This chapter presents a practical and validated AI approach to optimize three key parameters, including truck speed and payload and the total haul road resistance to minimize haul truck fuel consumption in surface mines. The results of the developed AI model for two mine sites have been presented in this chapter. The model increased the energy efficiency of mostly used trucks in surface mining, Caterpillar 793D and Komatsu HD785. The results show the trucks’ fuel consumption reduction between 9 and 12%.

2013 ◽  
Vol 47 (1) ◽  
pp. 83-95 ◽  
Author(s):  
Philip J. Ballou

AbstractShip and fleet operating efficiencies are multifaceted and interdependent. As such, efficiency management must involve an integrated solution that extends across the entire operation of the fleet. No single metric can be used to indicate success or failure of improving overall efficiency. Rather, a comparative analysis of multiple metrics is required. Furthermore, to be viable, efficiency management must accommodate operating priorities, goals, and constraints. Technology to save fuel and reduce carbon footprint is only useful if critical mission objectives are also met. Most ships can reduce fuel consumption simply by slowing down, albeit at the expense of increased passage duration. Tactical objectives that require fast transit times or reliable just-in-time arrival may justify the associated increase in fuel consumption. Ship operators fulfilling those objectives must look for ways other than slow steaming to improve energy efficiency, including, for example, deployment optimization, smart voyage planning, and onboard energy management. Other key metrics associated with operating efficiency include health and safety of crew and cargo, ship life cycle costs, and unscheduled time in port. Through strategic application of multiple efficiency management tools, these costs may be maintained or reduced while supporting the operational objectives and constraints of ship, fleet, and operator. All of these aspects of ship and fleet operating efficiency may be quantitatively compared to previous baselines using objective benchmarking methodologies.


2018 ◽  
Vol 71 ◽  
pp. 00003
Author(s):  
Michał Patyk ◽  
Przemysław Bodziony

Vehicle transport is a dominant type of technological processes in rock mines, and its profitability is strictly dependent on overall cost of exploitation. Rational design of mining transportation system based on haul trucks should result from thorough analysis of technical and economic issues, including both cost of purchase and its further exploitation, having a crucial impact on the cost of minerals extraction. Moreover, haul trucks should be selected with type of payload. In this paper a development of universal family of evaluation criteria as well as application of evaluation method for haul truck and processing system selection process for a specific exploitation conditions in surface mining have been carried out. This methodology presented in the paper is based on the principles of multicriteria optimization using one of method, i.e. APEKS. The result of the research is a universal methodology, and it consequently may be applied in other surface mines with similar exploitation parameters.


2021 ◽  
Vol 13 (11) ◽  
pp. 5837
Author(s):  
Mališa Đukić ◽  
Margareta Zidar

According to the European Commission Energy Union strategy from 2015, some of the main objectives are to improve energy efficiency, reduce dependence on energy imports, cut emissions, and drive jobs and growth. Achieving the objectives of the Energy Union requires significant financing, particularly for investments in energy efficiency. Serbia and Croatia included the objectives of the Energy Union in their national strategies and have implemented various investment projects in this area. This paper focuses on the sustainability of energy efficiency projects for public buildings which include not only energy efficiency investment cost but also non-energy efficiency investments. By applying the European Commission methodology for cost-benefit analysis, we assessed the sustainability of several projects in Serbia and Croatia. The sustainability assessment is done by quantifying energy savings, greenhouse gas emission reductions and the social and economic benefits that are related to non-energy efficiency project components. The values of economic performance indicators imply that society would be better off with projects that would contribute to achieving not only the targets set in national energy strategies but also to creating broader social benefits.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4343
Author(s):  
Dan Wu ◽  
Ching-Cheng Lu ◽  
Xiang Chen ◽  
Pei-Chieh Tu ◽  
An-Chi Yang ◽  
...  

This study introduces the translation adjustment model of Seiford and Zhu (2002) into dynamic DEA models to measure and analyze the dynamic energy efficiency of Asia-Pacific Economic Cooperation (APEC) economies from 2010 to 2014. The APEC economies are divided into annual energy and overall energy efficiency ratings, and improvement directions are proposed for the different variables. With the proposal of magnitude, this study discusses the changes in intertemporal conversion variables and proposes suggestions for improvement. Finally, this study analyzes the implications of energy investment and the efficiency policies of APEC economies. The results show that economies with the lowest overall energy efficiency ratings have great potential for improvement. Reducing capital stock, labor, fossil fuel consumption, and CO2 emissions while increasing GDP can increase energy efficiency ratings. However, economies do not want to reduce the state’s capital stock, and labor and population birth adjustments are difficult. Energy efficiency can only start by adjusting the consumption of fossil fuels, CO2 emissions, and GDP. The results indicate that to improve energy efficiency and reduce fossil fuel consumption and CO2 emissions, economies are expected to increase their GDP unless they enact cuts through policy and technical approaches, appropriately adjust their energy policies, and actively develop new energy technologies to effectively reduce CO2 emissions and achieve optimal energy efficiency.


2021 ◽  
Vol 4 (2) ◽  
pp. 9-12
Author(s):  
Oybek G‘oyibov ◽  
◽  
Shaxram Xaydarov

As a result of theoretical and experimental experiments carried out in this research paper, specificaspects of the temperature field in the parts of the canopy in terms of the thermal characteristics of its outer wall for improving energy efficiency in civil buildings are determined. Also, taking into account the fact that there is currently an increased demand for energy in buildings, it is advisable to use new innovative technologies. Therefore, this conducted experiment gave a positive result.Keywords:heat, insulation, ventilation, primary energy, external barriers, reserve, unconventional, resource, material, capacity, demand, fuel, consumption, air, indicator


2020 ◽  
Vol 20 (19) ◽  
pp. 11305-11327
Author(s):  
Pallav Purohit ◽  
Lena Höglund-Isaksson ◽  
John Dulac ◽  
Nihar Shah ◽  
Max Wei ◽  
...  

Abstract. Hydrofluorocarbons (HFCs) are widely used as cooling agents in refrigeration and air conditioning, as solvents in industrial processes, as fire-extinguishing agents, for foam blowing, and as aerosol propellants. They have been used in large quantities as the primary substitutes for ozone-depleting substances regulated under the Montreal Protocol. However, many HFCs are potent greenhouse gases (GHGs) and as such subject to global phase-down under the Kigali Amendment (KA) to the Montreal Protocol. In this study, we develop a range of long-term scenarios for HFC emissions under varying degrees of stringency in climate policy and assess co-benefits in the form of electricity savings and associated reductions in GHG and air pollutant emissions. Due to technical opportunities to improve energy efficiency in cooling technologies, there exist potentials for significant electricity savings under a well-managed phase-down of HFCs. Our results reveal that the opportunity to simultaneously improve energy efficiency in stationary cooling technologies could bring additional climate benefits of about the same magnitude as that attributed to the HFCs phase-down. If technical energy efficiency improvements are fully implemented, the resulting electricity savings could exceed 20 % of future global electricity consumption, while the corresponding figure for economic energy efficiency improvements would be about 15 %. The combined effect of HFC phase-down, energy efficiency improvement of the stationary cooling technologies, and future changes in the electricity generation fuel mix would prevent between 411 and 631 Pg CO2 equivalent of GHG emissions between 2018 and 2100, thereby making a significant contribution towards keeping the global temperature rise below 2 ∘C. Reduced electricity consumption also means lower air pollution emissions in the power sector, estimated at about 5 %–10 % for sulfur dioxide (SO2), 8 %–16 % for nitrogen oxides (NOx), and 4 %–9 % for fine particulate matter (PM2.5) emissions compared with a pre-Kigali baseline.


2020 ◽  
Author(s):  
Pallav Purohit ◽  
Lena Höglund-Isaksson ◽  
John Dulac ◽  
Nihar Shah ◽  
Max Wei ◽  
...  

Abstract. Hydrofluorocarbons (HFCs) are widely used as cooling agents in refrigeration and air conditioning, as solvents in industrial processes, as fire extinguishing agents, for foam blowing and as aerosol propellants. They have been the primary substitutes for ozone-depleting substances regulated under the Montreal Protocol (MP). However, HFCs are potent greenhouse gases (GHGs) and as such subject to global phase-down under the Kigali Amendment (KA) to the MP. In this study, we develop a range of long-term scenarios for HFC emissions under varying degrees of stringency in climate policy and assess co-benefits in the form of electricity savings and associated reductions in GHG and air pollutant emissions. Due to technical opportunities to improve energy efficiency in cooling technologies during the phase-down of HFCs, there exist potentials for significant electricity savings under a well-managed phase-down of HFCs. Our results show that annual pre-KA baseline emissions of HFCs are expected to increase from almost 0.5 to about 4.3 Gt CO2eq between 2005 and 2050 and reach between 6.2 and 6.8 Gt CO2eq in 2100. The growth is driven by a strong increase in demand for refrigeration and air conditioning services, which in turn is driven by an expected increase in per capita wealth in developing countries and a warmer future climate. We estimate that full compliance with KA means cumulative global HFC emissions that are 87 % lower than in the pre-KA baseline between 2018 and 2100. Also, the opportunity to simultaneously improve energy efficiency in stationary cooling technologies during such a transition could bring about additional climate benefits of about the same magnitude as that attributed to the phase-down of HFCs. If technical energy efficiency improvements are fully implemented, the resulting electricity savings could exceed a fifth of future global electricity consumption. Together with an HFC phase-down, this means preventing between 390 and 640 Gt CO2 equivalent of GHG emissions between 2018 and 2100, thereby making a significant contribution towards keeping the global temperature rise below 2 °C. Reduced electricity consumption also means lower air pollution emissions in the power sector, estimated at about 10 % for SO2, 16 % for NOx and 9 % for PM2.5 emissions, compared with a pre-KA baseline.


Sign in / Sign up

Export Citation Format

Share Document