Ship Energy Efficiency Management Requires a Total Solution Approach

2013 ◽  
Vol 47 (1) ◽  
pp. 83-95 ◽  
Author(s):  
Philip J. Ballou

AbstractShip and fleet operating efficiencies are multifaceted and interdependent. As such, efficiency management must involve an integrated solution that extends across the entire operation of the fleet. No single metric can be used to indicate success or failure of improving overall efficiency. Rather, a comparative analysis of multiple metrics is required. Furthermore, to be viable, efficiency management must accommodate operating priorities, goals, and constraints. Technology to save fuel and reduce carbon footprint is only useful if critical mission objectives are also met. Most ships can reduce fuel consumption simply by slowing down, albeit at the expense of increased passage duration. Tactical objectives that require fast transit times or reliable just-in-time arrival may justify the associated increase in fuel consumption. Ship operators fulfilling those objectives must look for ways other than slow steaming to improve energy efficiency, including, for example, deployment optimization, smart voyage planning, and onboard energy management. Other key metrics associated with operating efficiency include health and safety of crew and cargo, ship life cycle costs, and unscheduled time in port. Through strategic application of multiple efficiency management tools, these costs may be maintained or reduced while supporting the operational objectives and constraints of ship, fleet, and operator. All of these aspects of ship and fleet operating efficiency may be quantitatively compared to previous baselines using objective benchmarking methodologies.

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4343
Author(s):  
Dan Wu ◽  
Ching-Cheng Lu ◽  
Xiang Chen ◽  
Pei-Chieh Tu ◽  
An-Chi Yang ◽  
...  

This study introduces the translation adjustment model of Seiford and Zhu (2002) into dynamic DEA models to measure and analyze the dynamic energy efficiency of Asia-Pacific Economic Cooperation (APEC) economies from 2010 to 2014. The APEC economies are divided into annual energy and overall energy efficiency ratings, and improvement directions are proposed for the different variables. With the proposal of magnitude, this study discusses the changes in intertemporal conversion variables and proposes suggestions for improvement. Finally, this study analyzes the implications of energy investment and the efficiency policies of APEC economies. The results show that economies with the lowest overall energy efficiency ratings have great potential for improvement. Reducing capital stock, labor, fossil fuel consumption, and CO2 emissions while increasing GDP can increase energy efficiency ratings. However, economies do not want to reduce the state’s capital stock, and labor and population birth adjustments are difficult. Energy efficiency can only start by adjusting the consumption of fossil fuels, CO2 emissions, and GDP. The results indicate that to improve energy efficiency and reduce fossil fuel consumption and CO2 emissions, economies are expected to increase their GDP unless they enact cuts through policy and technical approaches, appropriately adjust their energy policies, and actively develop new energy technologies to effectively reduce CO2 emissions and achieve optimal energy efficiency.


2021 ◽  
Vol 4 (2) ◽  
pp. 9-12
Author(s):  
Oybek G‘oyibov ◽  
◽  
Shaxram Xaydarov

As a result of theoretical and experimental experiments carried out in this research paper, specificaspects of the temperature field in the parts of the canopy in terms of the thermal characteristics of its outer wall for improving energy efficiency in civil buildings are determined. Also, taking into account the fact that there is currently an increased demand for energy in buildings, it is advisable to use new innovative technologies. Therefore, this conducted experiment gave a positive result.Keywords:heat, insulation, ventilation, primary energy, external barriers, reserve, unconventional, resource, material, capacity, demand, fuel, consumption, air, indicator


2021 ◽  
Author(s):  
Ali Soofastaei ◽  
Milad Fouladgar

This chapter demonstrates the practical application of artificial intelligence (AI) to improve energy efficiency in surface mines. The suggested AI approach has been applied in two different mine sites in Australia and Iran, and the achieved results have been promising. Mobile equipment in mine sites consumes a massive amount of energy, and the main part of this energy is provided by diesel. The critical diesel consumers in surface mines are haul trucks, the huge machines that move mine materials in the mine sites. There are many effective parameters on haul trucks’ fuel consumption. AI models can help mine managers to predict and minimize haul truck energy consumption and consequently reduce the greenhouse gas emission generated by these trucks. This chapter presents a practical and validated AI approach to optimize three key parameters, including truck speed and payload and the total haul road resistance to minimize haul truck fuel consumption in surface mines. The results of the developed AI model for two mine sites have been presented in this chapter. The model increased the energy efficiency of mostly used trucks in surface mining, Caterpillar 793D and Komatsu HD785. The results show the trucks’ fuel consumption reduction between 9 and 12%.


2021 ◽  
Vol 13 (3) ◽  
pp. 1584
Author(s):  
Roberto Araya ◽  
Pedro Collanqui

Education is critical for improving energy efficiency and reducing CO2 concentration, but collaboration between countries is also critical. It is a global problem in which we cannot isolate ourselves. Our students must learn to collaborate in seeking solutions together with others from other countries. Thus, the research question of this study is whether interactive cross-border science classes with energy experiments are feasible and can increase awareness of energy efficiency among middle school students. We designed and tested an interactive cross-border class between Chilean and Peruvian eighth-grade classes. The classes were synchronously connected and all students did experiments and answered open-ended questions on an online platform. Some of the questions were designed to check conceptual understanding whereas others asked for suggestions of how to develop their economies while keeping CO2 air concentration at acceptable levels. In real time, the teacher reviewed the students’ written answers and the concept maps that were automatically generated based on their responses. Students peer-reviewed their classmates’ suggestions. This is part of an Asia-Pacific Economic Cooperation (APEC) Science Technology Engineering Mathematics (STEM) education project on energy efficiency using APEC databases. We found high levels of student engagement, where students discussed not only the cross-cutting nature of energy, but also its relation to socioeconomic development and CO2 emissions, and the need to work together to improve energy efficiency. In conclusion, interactive cross-border science classes are a feasible educational alternative, with potential as a scalable public policy strategy for improving awareness of energy efficiency among the population.


2020 ◽  
Vol 3 (1) ◽  
pp. 56
Author(s):  
Arkadiusz Gendek ◽  
Monika Aniszewska ◽  
Witold Zychowicz ◽  
Tadeusz Moskalik ◽  
Jan Malaťák ◽  
...  

The aim of the research was to verify the impact of selected parameters on the efficiency and organization of chipper operations. The paper analyzes chipping operations in Polish forests with a focus on work site location, overnight chipper location, chipper workload per site, fuel consumption, and work shift duration, as all of these factors may affect operating efficiency. The mean chipper travel distance between sites during a shift ranged from 4.74 km to 9.5 km (chippers moved on average every other day). The mean work shift duration was 12.4 h. At the end of a shift, the chippers traveled on average from 4.2 km to 6.3 km to an overnight location. At the beginning of a workday, the chippers were dispatched to sites at a distance of 2.5 km to 4.0 km. The average fuel consumption of the forwarder-mounted chippers was 16 L/h and that of the truck-mounted chipper was 7.7 L/h. It was found that the following actions have a decisive influence on the effectiveness of the operation of the chippers: determination of the size of individual tasks and the deployment of successive forest areas, indication of the proper location of the machine base, and the method of accessing the forest area.


2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Fan Yang ◽  
Kotaro Tadano ◽  
Gangyan Li ◽  
Toshiharu Kagawa

Factories are increasingly reducing their air supply pressures in order to save energy. Hence, there is a growing demand for pneumatic booster valves to overcome the local pressure deficits in modern pneumatic systems. To further improve energy efficiency, a new type of booster valve with energy recovery (BVER) is proposed. The BVER principle is presented in detail, and a dimensionless mathematical model is established based on flow rate, gas state, and energy conservation. The mathematics model was transformed into a dimensionless model by accurately selecting the reference values. Subsequently the dimensionless characteristics of BVER were found. BVER energy efficiency is calculated based on air power. The boost ratio is found to be mainly affected by the operational parameters. Among the structural ones, the recovery/boost chamber area ratio and the sonic conductance of the chambers are the most influential. The boost ratio improves by 15%–25% compared to that of a booster valve without an energy recovery chamber. The efficiency increases by 5%–10% depending on the supply pressure. A mathematical model is validated by experiment, and this research provides a reference for booster valve optimisation and energy saving.


2021 ◽  
Vol 13 (7) ◽  
pp. 3810
Author(s):  
Alessandra Cantini ◽  
Leonardo Leoni ◽  
Filippo De Carlo ◽  
Marcello Salvio ◽  
Chiara Martini ◽  
...  

The cement industry is highly energy-intensive, consuming approximately 7% of global industrial energy consumption each year. Improving production technology is a good strategy to reduce the energy needs of a cement plant. The market offers a wide variety of alternative solutions; besides, the literature already provides reviews of opportunities to improve energy efficiency in a cement plant. However, the technology is constantly developing, so the available alternatives may change within a few years. To keep the knowledge updated, investigating the current attractiveness of each solution is pivotal to analyze real companies. This article aims at describing the recent application in the Italian cement industry and the future perspectives of technologies. A sample of plant was investigated through the analysis of mandatory energy audit considering the type of interventions they have recently implemented, or they intend to implement. The outcome is a descriptive analysis, useful for companies willing to improve their sustainability. Results prove that solutions to reduce the energy consumption of auxiliary systems such as compressors, engines, and pumps are currently the most attractive opportunities. Moreover, the results prove that consulting sector experts enables the collection of updated ideas for improving technologies, thus giving valuable inputs to the scientific research.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 537
Author(s):  
Mohammad Baniata ◽  
Haftu Tasew Reda ◽  
Naveen Chilamkurti ◽  
Alsharif Abuadbba

One of the major concerns in wireless sensor networks (WSNs) is most of the sensor nodes are powered through limited lifetime of energy-constrained batteries, which majorly affects the performance, quality, and lifetime of the network. Therefore, diverse clustering methods are proposed to improve energy efficiency of the WSNs. In the meantime, fifth-generation (5G) communications require that several Internet of Things (IoT) applications need to adopt the use of multiple-input multiple-output (MIMO) antenna systems to provide an improved capacity over multi-path channel environment. In this paper, we study a clustering technique for MIMO-based IoT communication systems to achieve energy efficiency. In particular, a novel MIMO-based energy-efficient unequal hybrid clustering (MIMO-HC) protocol is proposed for applications on the IoT in the 5G environment and beyond. Experimental analysis is conducted to assess the effectiveness of the suggested MIMO-HC protocol and compared with existing state-of-the-art research. The proposed MIMO-HC scheme achieves less energy consumption and better network lifetime compared to existing techniques. Specifically, the proposed MIMO-HC improves the network lifetime by approximately 3× as long as the first node and the final node dies as compared with the existing protocol. Moreover, the energy that cluster heads consume on the proposed MIMO-HC is 40% less than that expended in the existing protocol.


Sign in / Sign up

Export Citation Format

Share Document