scholarly journals Biogas Generation from Co-Digestion Waste Systems: The Role of Water Hyacinth

2022 ◽  
Author(s):  
Adedeji A. Adelodun ◽  
Temitope M. Olajire ◽  
Ochuko Mary Ojo

Using biomass as a renewable energy source has earned tremendous interest from researchers in recent decades, especially because the technology is environmentally benign. This article reviews the recent methods for generating biogas from water hyacinth (WH, Eichornia crassipes), arguably the world’s most evasive aquatic macrophyte. Therefore, various economic, environmentally benign, and renewable procedures that enhance biogas production from WH biomass are reviewed. WH has been co-digested with numerous waste types, including poultry droppings, municipal wastes, animal tissue wastes, pig wastes, cow dungs, etc., recording varying success degrees. Other studies focused on optimizing the operation parameters, such as mixing ratio, contact time, pH, temperature, organic loading rate, etc. We observed that most attempts to generate biogas from WH alone were not promising. However, when co-digested with other biomasses or wastes, WH either increases the process rate or improves the methane yield content. Also, the potential of WH as a phytoremdiator-cum-biogas source was investigated. This chapter provides mathematical models, scale-up installation models, and specific experimental results from various studies to guide future study plans toward optimizing CH4 generation from WH co-digestion.

In this paper three sustainable approaches are made in waste management option. Firstly primary treated domestic sewage is treated by aquatic macrophytes using duckweed, water hyacinth and water lettuce. Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Phosphate, Nitrates are tested before and after. Result indicates in terms of water quality, almost all three plants shows same removal efficiencies. BOD and TSS removal efficiency is attained more than 95%. COD and TDS removal is reached upto 50% for almost all plants. Secondly the used aquatic macrophytes for wastewater treatment is again used for generation of biogas (water lettuce unit, duckweed unit, water lettuce unit). In addition to three aquatic macrophytes, sludge is collected from aquatic macrophyte unit for generation of biogas. Comparison is made with conventional cow dung biogas unit. Result indicates water lettuce and duckweed produce biogas at earlier stage itself and water hyacinth takes some time for starting of biogas production. This may be due to the structure and texture causes some time for decomposition. Sludge gives maximum biogas generation among all experimental setup. Also in this study cow dung did not give biogas more may be due to poor blend ratio of cow dung with water is one of the reason.


2014 ◽  
Vol 3 (2) ◽  
Author(s):  
Megawati Megawati

<p>Eceng gondok (Eichornia crassipes) merupakan tanaman yang menjadi limbah perairan dan keberadaannya belum banyak dimanfaatkan. Kandungan selulosa, hemiselulosa, dan lignin di dalamnya dapat dimanfaatkan menjadi biogas melalui proses fermentasi. Penelitian ini mengkaji pengaruh EM4 (Effective Microorganism- 4) terhadap massa, nilai kalor, dan kecepatan pembentukan biogas dari eceng gondok. Percobaan dilakukan dalam anaerobic digester berukuran 4 liter, bahan baku yang digunakan adalah eceng gondok, rumen sapi, dan air dengan variabel penambahan EM4 sebesar 1% dan 0%. Fermentasi dilakukan secara batch dengan pengukuran gas (temperatur, tekanan, dan massa) setiap 7 hari sekali sampai hari ke-35. Sebelum proses fermentasi, dilakukan pengujian terhadap rasio C/N campuran bahan baku. Pembakaran gas dilakukan untuk membuktikan gas yang didapat mengandung metana. Hasil Penelitian menunjukkan bahwa rasio C/N untuk variabel dengan penambahan EM4 1% sebesar 5,33 dan rasio C/N untuk variabel dengan penambahan EM4 0% sebesar 7. Jadi, penambahan EM4 dapat menurunkan rasio C/N. Sementara itu, hasil fermentasinya memperlihatkan bahwa EM4 memperkecil produksi biogas meskipun proses pembentukannya cepat. Massa total biogas yang didapat pada variabel EM4 1% sebesar 1,1 g dan variabel EM4 0% sebesar 1,55 g. Tekanan<br />biogas mengalami fluktuasi (pada variabel EM4 1% sebesar 35,6 cmH2O, sedangkan pada variabel EM4 0% sebesar 40,6 cmH2O). Berdasarkan simulasi menggunakan chemical process simulator software, diketahui heating value biogas sebesar 39.180 kJ/kg.</p><p> </p><p>Water hyacinth (Eichornia crassipes) is a plant that becomes waste and its existence has not been widely used. Content of cellulose, hemicellulose, and lignin in it can be converted into biogas through a process of fermentation. Study examines the effect of EM4 (Effective Microorganism-4) on the mass, heating value, and the rate of formation of biogas from water hyacinth. An experiments were performed in anaerobic digesters size of 4 liters, the raw material used is water hyacinth, cow's rumen, and water with variable of EM4 addition of 1% and 0%. Fermentation was carried out in batch condition with gas measurement (temperature, pressure, and mass) every 7 days until the 35th day. Before fermentation, the C/N ratio of raw material mixture was analyzed. The gas was burnt to prove that the obtained gas containing methane. Results showed that the C/N ratio for the variable with the addition EM4 1% is 5.33 and C/N ratio for the variable with the addition EM4 0% is 7. Thus, the addition of EM4 can reduce C/N ratio. Despite the formation process is rapid, the results showed that EM4 reduce the biogas production. Total mass of biogas obtained at variable<br />EM4 1% is 1.1 g and variable EM4 0% is 1,55 g. Biogas pressure is fluctuated (at variable EM4 1% is 35.6 cmH2O, EM4 0% is 40.6 cmH2O). Based on simulation using the chemical process simulator software, it is known that biogas heating value is 39,180 kJ/kg.</p>


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1875
Author(s):  
Jhessica Mosquera ◽  
Carol Rangel ◽  
Jogy Thomas ◽  
Angelica Santis ◽  
Paola Acevedo ◽  
...  

This study evaluates the performance of different agricultural by-products to identify the potential effect of independent variables, using as the dependent variable the biogas production. A Box–Behnken experimental design was carried out in a pilot-scale plant of four stirred stainless-steel digesters under mesophilic semi-continuous digestion. The results obtained support the creation of a technical framework to scale up the process and further evaluation of the potential environmental impacts through life cycle assessment (LCA) methodology. A stable behaviour was achieved in 12 of the 13 experiments proposed. The highest value of daily biogas production was 2200.15 mL day−1 with a stabilization time of 14 days, an organic loading rate of 4 g VS feed daily, low C/N ratio and a 1:1 relation of nitrogen providers. The concentrations of CH4 remained stable after the production stabilization and an average biogas composition of 60.6% CH4, 40.1% CO2 and 0.3% O2 was obtained for the conditions mentioned above. Therefore, the real scale plant was estimated to manage 2.67 tonnes of residual biomass per day, generating 369.69 kWh day−1 of electricity. The LCA analysis confirms that the co-digestion process evaluated is a feasible and environmentally sustainable option for the diversification of the Colombian energy matrix and the development of the agro-industrial sector.


BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 4254-4269
Author(s):  
Jinghong Zhou ◽  
Xiaona Shang ◽  
Zhiwei Wang ◽  
Cancan Zhu ◽  
Shuangfei Wang

Bagasse spraying wastewater (BSW) is a source of organic pollutants during bagasse processing. In this study, the feasibility of anaerobic treatment of BSW under different calcium concentrations (60 to 2400 mg/L) was studied. The experiment was performed in a lab-scale up-flow multistage anaerobic reactor (UMAR) inoculated with granular sludge, and operated for 160 days at a constant organic loading rate of 6 kg COD/(m3·d). Treatment of BSW with 60 to 800 mg Ca2+/L resulted in 80.7 to 82.7% of COD removal, 161 to 232.7 mg COD/L of volatile fatty acid (VFA) yield, 0.56 to 0.79 m3/(kgCOD·d) of biogas production rate, and 2.4 to 2.66 m3/(m3·d) of volume loading rate (VLR). The pH remained within the optimal range for anaerobic digestion (adjust to pH = 6.8 to 7.0). The VFAs were composed of 77 to 85% acetic acid, 8.4 to 13.2% butyric acid, and 6.6 to 9.6% propionic acid. At higher influent calcium concentrations (> 800 mg/L), the hydrolysis process appeared to be inhibited, affecting the anaerobic digestion performance of the reactor. In particular, the COD removal efficiency decreased to 55.5%, and the VFA content in the effluent significantly increased due to the lower pH. Microbial community analysis showed that at the end of anaerobic digestion, the Syntrophobacter disappeared, and Clostridium and Anerolineaceae were the main genus and family, respectively. Overall, the results indicated that low calcium (< 300 mg/L) had a positive effect on the UMAR performance.


2015 ◽  
Vol 73 (2) ◽  
pp. 355-361 ◽  
Author(s):  
M. A. Hernández-Shek ◽  
L. S. Cadavid-Rodríguez ◽  
I. V. Bolaños ◽  
A. C. Agudelo-Henao

The potential to recover bioenergy from anaerobic digestion of water hyacinth (WH) and from its co-digestion with fruit and vegetable waste (FVW) was investigated. Initially, biogas and methane production were studied using the biochemical methane potential (BMP) test at 2 g volatile solids (VS) L−1 of substrate concentration, both in the digestion of WH alone and in its co-digestion with FVW (WH-FVW ratio of 70:30). Subsequently, the biogas production was optimized in terms of total solids (TS) concentration, testing 4 and 6% of TS. The BMP test showed a biogas yield of 0.114 m3 biogas kg−1 VSadded for WH alone. On the other hand, the biogas potential from the WH-FVW co-digestion was 0.141 m3 biogas kg−1 VSadded, showing an increase of 23% compared to that of WH alone. Maximum biogas production of 0.230 m3 biogas kg−1 VSadded was obtained at 4% of TS in the co-digestion of WH-FVW. Using semi-continuously stirred tank reactors, 1.3 m3 biogas yield kg−1 VSadded was produced using an organic loading rate of 2 kg VS m−3 d−1 and hydraulic retention time of 15 days. It was also found that a WH-FVW ratio of 80:20 improved the process in terms of pH stability. Additionally, it was found that nitrogen can be recovered in the liquid effluent with a potential for use as a liquid fertilizer.


Biomass ◽  
1990 ◽  
Vol 21 (2) ◽  
pp. 157-161 ◽  
Author(s):  
G.S. Geeta ◽  
K.S. Jagadeesh ◽  
T.K.R. Reddy

This book critically assesses the expanding field of global health. It brings together an international and interdisciplinary group of scholars to address the medical, social, political, and economic dimensions of the global health enterprise through vivid case studies and bold conceptual work. The book demonstrates the crucial role of ethnography as an empirical lantern in global health, arguing for a more comprehensive, people-centered approach. Topics include the limits of technological quick fixes in disease control, the moral economy of global health science, the unexpected effects of massive treatment rollouts in resource-poor contexts, and how right-to-health activism coalesces with the increased influence of the pharmaceutical industry on health care. The chapters explore the altered landscapes left behind after programs scale up, break down, or move on. We learn that disease is really never just one thing, technology delivery does not equate with care, and biology and technology interact in ways we cannot always predict. The most effective solutions may well be found in people themselves, who consistently exceed the projections of experts and the medical-scientific, political, and humanitarian frameworks in which they are cast. This book sets a new research agenda in global health and social theory and challenges us to rethink the relationships between care, rights, health, and economic futures.


Sign in / Sign up

Export Citation Format

Share Document