scholarly journals Heavy Metals in Urban Dust

Author(s):  
Fumiyuki Nakajima ◽  
Rupak Aryal
Keyword(s):  
PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261957
Author(s):  
Abdulaziz G. Alghamdi ◽  
Mohamed H. EL-Saeid ◽  
Abdulhakim J. Alzahrani ◽  
Hesham M. Ibrahim

Depending on their particle size and concentration, heavy metals in urban dust pose a health hazard to humans. This study investigated the total concentration, health risk, integrated pollution load index (IPI), and enrichment factor (EF) of various heavy metals in urban dust at different locations in Riyadh City. Surface dust samples were collected from 50 different residential yards in the north, south, west, east, and central corners of the city and analyzed for cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn). With respect to concentrations heavy metals were in the following order Zn > Cu > Mn > Cr > Ni > Pb > Cd. The EF trends exposed repeated anthropogenic activities were responsible for Mn, Cr, and Ni, while Pb, Zn, and Cu appeared to come from Earth’s crust. Since the heavy metal concentrations were lower than the threshold values, children and adults are exposed to lower health risk in investigated area. Also, there are no pollution of heavy metals in the dust with respect to IPI which is less than the critical limit (<1) with the exception of a sampling location in north side of the city with higher IPI showed unhealthy respiration conditions in particular areas. It was concluded that rapid industrialization and urbanization and their concentrations in dust may cause health problems in near future in north side as well as other sides of Riyadh City.


2016 ◽  
Vol 9 (2) ◽  
Author(s):  
Lilit Sahakyan ◽  
Nairuhi Maghakyan ◽  
Olga Belyaeva ◽  
Gevorg Tepanosyan ◽  
Mkhitar Kafyan ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 891
Author(s):  
Chikumbusko Chiziwa Kaonga ◽  
Ishmael Bobby Mphangwe Kosamu ◽  
Wells Robert Utembe

This review gives insights into the levels of metals in urban dust, their determination methods, and risk assessment. Urban dust harbors a number of pollutants, including heavy metals. There are various methods used for the sampling of urban dust for heavy-metal analysis and source-apportionment purposes, with the predominant one being the use of plastic sampling materials to avoid prior contamination. There are also various methods for the determination of metals, which include: atomic absorption spectroscopy (AAS) and inductively coupled plasma-mass spectrometry (ICP-MS), among others. Studies have shown that pollutants in urban dust are mainly derived from industrial activities and coal combustion, whereas traffic emissions are also an important, but not a predominant source of pollution. The varying particle-size distribution of urban dust and its large surface area makes it easier for the deposition and transport of heavy metals. Risk-assessment studies have shown that metals in urban dust could cause such problems as human pulmonary toxicity and reduction of invertebrate populations. The risk levels seem to be higher in children than adults, as some studies have shown. It is therefore important that studies on metals in urban dust should always incorporate risk assessment as one of the main issues.


1984 ◽  
Vol 33 (1-4) ◽  
pp. 283
Author(s):  
G. Adie ◽  
R.S. Hamilton ◽  
D.M. Revitt ◽  
R.S. Warren ◽  
M. Jones ◽  
...  

2019 ◽  
Vol 20 (3) ◽  
pp. 1-9
Author(s):  
José Gonzalo Zapata Carbonell ◽  
Francisco Bautista Zúñiga ◽  
Jaime Rendón von Osten ◽  
Luz del Carmen Lagunes Espinoza ◽  
David de Jesús Palma López ◽  
...  

The first diagnose of heavy metal (Cd, Cr, Cu, Fe, Mn, Ni and Pb) concentrations present in Chetumal, Mexico and its spatial distribution was carried out by analyzing 86 samples of urban dust through atomic absorption spectrophotometry. The assessment of the extent of pollution was undertaken by the use of the Mexican Residential Soil Guideline Values, the calculation of the contamination factor and the pollution load index. The results showed concentrations of heavy metals below the Mexican guidelines in the city, except for chromium and lead in a few samples. However, using the contamination factor the concentrations for chromium, lead and copper are exceeded in some samples. The map of pollution load index shows the areas requiring immediate attention from the decision makers.


Author(s):  
José L. Cortés ◽  
◽  
Francisco Bautista ◽  
Carmen Delgado ◽  
Patricia Quintana ◽  
...  

2018 ◽  
Vol 10 (11) ◽  
pp. 4105 ◽  
Author(s):  
Pura Marín Sanleandro ◽  
Antonio Sánchez Navarro ◽  
Elvira Díaz-Pereira ◽  
Francisco Bautista Zuñiga ◽  
Miriam Romero Muñoz ◽  
...  

In the present work, a sampling grid of the urban core of the city of Murcia (South East Spain) was designed in order to analyze street dust, focusing on the contents of the heavy metals Cd, Cr, Cu, Ni, Pb, and Zn and their relationships with the color of the sample, the traffic pattern, and the location where they were sampled (sidewalks, ledges, and roads). The characterization of the samples was carried out by X-ray diffraction and scanning electron microscopy, whereas the heavy metals were extracted by acid digestion and determined by inductively coupled plasma mass spectrometry. The concentration (mg/kg) in urban dust of the city of Murcia was highest for Zn (653), followed by Cu (201) > Pb (177) > Cr (117) > Ni (51) >> Cd (0.5). The color expounded statistically significant differences with regard to the heavy metals, including the pollutant load. The same pattern was found when the classification variable was the traffic intensity, except in the case of Ni. The areas with a higher risk of contamination by heavy metals in the urban dust are the ledges of narrow city center streets with moderate traffic, where Zn and Pb seem to accumulate most greatly.


Sign in / Sign up

Export Citation Format

Share Document