scholarly journals Aluminum Mineral Processing and Metallurgy: Iron-Rich Bauxite and Bayer Red Muds

Author(s):  
Yingyi Zhang ◽  
Yuanhong Qi ◽  
Jiaxin Li
2014 ◽  
Vol 86 (6) ◽  
pp. 883-890 ◽  
Author(s):  
Andreas Boehm ◽  
Martin Boehm ◽  
Armin Kogelbauer
Keyword(s):  

1983 ◽  
Vol 1 (1) ◽  
pp. 57-60 ◽  
Author(s):  
J. H. P. Watson ◽  
A. S. Bahaj ◽  
D. Rassi

In this short communication it is shown that it is possible to undertake inexpensive but useful preliminary mineral studies using single–wire HGMS. Such studies enable an assessment to be made of the viability of HGMS as a large-scale processing technique for particular mineral slurries.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 359
Author(s):  
Liping Zhang ◽  
Shengnian Wu ◽  
Nan Zhang ◽  
Ruihan Yao ◽  
Eryong Wu

Salicylic hydroxamic acid is a novel flotation reagent used in mineral processing. However, it impacts the flotation wastewater leaving behind high chromaticity which limits its reuse and affects discharge for mining enterprises. This study researched ozonation catalyzed by the granular activated carbon (GAC) method to treat the chromaticity of the simulated mineral processing wastewater with salicylic hydroxamic acid. The effects of pH value, ozone (O3) concentration, GAC dosage, and reaction time on chromaticity and chemical oxygen demand (CODCr) removal were discussed. The results of individual ozonation experiments showed that the chromaticity removal ratio reached 79% and the effluent chromaticity exceeded the requirement of reuse and discharge when the optimal experimental conditions were pH value 3, ozone concentration 6 mg/L, and reaction time 40 min. The orthogonal experimental results of catalytic ozonation with GAC on chromaticity removal explained that the chromaticity removal ratio could reach 96.36% and the chromaticity of effluent was only 20 when the optimal level of experimental parameters was pH value 2.87, O3 concentration 6 mg/L, GAC dosage 0.06 g/L, reaction time 60 min respectively. The degradation pathway of salicylic hydroxamic acid by ozonation was also considered based on an analysis with ultraviolet absorption spectrum and high-performance liquid chromatography (HPLC).


Author(s):  
Pratama Istiadi Guntoro ◽  
Yousef Ghorbani ◽  
Jan Rosenkranz

AbstractCurrent advances and developments in automated mineralogy have made it a crucial key technology in the field of process mineralogy, allowing better understanding and connection between mineralogy and the beneficiation process. The latest developments in X‑ray micro-computed tomography (µCT) have shown a great potential to let it become the next-generation automated mineralogy technique. µCT’s main benefit lies in its capability to allow 3D monitoring of the internal structure of the ore sample at resolutions down to a few hundred nanometers, thus excluding the common stereological error in conventional 2D analysis. Driven by the technological and computational progress, µCT is constantly developing as an analysis tool and successively it will become an essential technique in the field of process mineralogy. This study aims to assess the potential application of µCT systems, for 3D ore characterization through relevant case studies. The opportunities and platforms that µCT 3D ore characterization provides for process design and simulation in mineral processing are presented.


2013 ◽  
Vol 734-737 ◽  
pp. 1110-1113
Author(s):  
Xiang Wen Lv ◽  
Xiong Tong ◽  
Xian Xie ◽  
Qing Hua Zhou ◽  
Yong Cheng Zhou ◽  
...  

A beneficiation experimental research is conducted on sulfur-containing 18.17% multi-metals tailings. On the basis of the traditional mineral processing technology, it introduces X-51, a new type sulfide mineral activator, to instead of copper sulfate. Eventually, the sulfur concentrate grade is 47.51% with the recovery of 92.11%. The effectively recovery of the sulfur is creating good economic benefits and environmental benefit.


Sign in / Sign up

Export Citation Format

Share Document