scholarly journals TNFR2 and Regulatory T Cells: Potential Immune Checkpoint Target in Cancer Immunotherapy

Cytokines ◽  
2020 ◽  
Author(s):  
Xuehui He ◽  
Xinhui Wang
2021 ◽  
Vol 12 ◽  
Author(s):  
Zhouhong Ge ◽  
Maikel P. Peppelenbosch ◽  
Dave Sprengers ◽  
Jaap Kwekkeboom

T cell immunoreceptor with Ig and ITIM domains (TIGIT) is an inhibitory receptor expressed on several types of lymphocytes. Efficacy of antibody blockade of TIGIT in cancer immunotherapy is currently widely being investigated in both pre-clinical and clinical studies. In multiple cancers TIGIT is expressed on tumor-infiltrating cytotoxic T cells, helper T cells, regulatory T cells and NK cells, and its main ligand CD155 is expressed on tumor-infiltrating myeloid cells and upregulated on cancer cells, which contributes to local suppression of immune-surveillance. While single TIGIT blockade has limited anti-tumor efficacy, pre-clinical studies indicate that co-blockade of TIGIT and PD-1/PD-L1 pathway leads to tumor rejection, notably even in anti-PD-1 resistant tumor models. Among inhibitory immune checkpoint molecules, a unique property of TIGIT blockade is that it enhances not only anti-tumor effector T-cell responses, but also NK-cell responses, and reduces the suppressive capacity of regulatory T cells. Numerous clinical trials on TIGIT-blockade in cancer have recently been initiated, predominantly combination treatments. The first interim results show promise for combined TIGIT and PD-L1 co-blockade in solid cancer patients. In this review, we summarize the current knowledge and identify the gaps in our current understanding of TIGIT’s roles in cancer immunity, and provide, based on these insights, recommendations for its positioning in cancer immunotherapy.


2021 ◽  
Vol 14 (9) ◽  
pp. 101170
Author(s):  
Vera Bauer ◽  
Fatima Ahmetlić ◽  
Nadine Hömberg ◽  
Albert Geishauser ◽  
Martin Röcken ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A888-A888
Author(s):  
Laura Ridgley ◽  
Angus Dalgleish ◽  
Mark Bodman-Smith

BackgroundVγ9Vδ2 T-cells are a subset of cells with a crucial role in immunosurveillance which can be activated and expanded by multiple means to stimulate effector responses, often exploited in cancer immunotherapy. Little is known about the expression of checkpoint molecules on this cell population and whether the ligation of these molecules can regulate their activity. The aim of this study was to assess the expression of activatory and inhibitory markers on Vγ9Vδ2 T-cells to assess potential avenues of regulation to target with immunotherapy.MethodsPBMCs were isolated from healthy donors and the expression of activatory and inhibitory receptors was assessed on Vγ9Vδ2 T-cells by flow cytometry at baseline, following 24 hours activation and 14 days expansion using zoledronic acid (ZA) and Bacillus Calmette-Guerin (BCG), both with IL-2. Activation and expansion of Vδ2 cells was assessed by expression of CD69 and by frequency of Vδ2 cells, respectively. Production of effector molecules was also assessed following coculture with various tumour cell targets. The effect of immune checkpoint blockade on Vγ9Vδ2 T-cells was also assessed.ResultsVγ9Vδ2 T-cells constitutively expressed high levels of NK-associated activatory markers NKG2D and DNAM1 which remained high following stimulation with ZA and BCG. Vγ9Vδ2 T-cells expressed variable levels of checkpoint inhibitor molecules at baseline with high levels of BTLA, KLRG1 and NKG2A and intermediate levels of PD1, TIGIT and VISTA. Expression of checkpoint receptors were modulated following activation and expansion with ZA and BCG with decreased expression of BTLA and upregulation of numerous markers including PD1, TIGIT, TIM3, LAG3 and VISTA. Expression of these markers is further modulated upon coculture with tumour cell lines with changes reflecting activation of these cells with Vγ9Vδ2 T-cells expressing inhibitory receptors PD1 and NKG2A producing the highest level of TNF.ConclusionsOur data reveals unique characteristics of Vδ2 in terms of their expression of immune checkpoints, which provide a mechanism which may be utilised by tumour cells to subvert Vγ9Vδ2 T-cell cytotoxicity. Our work suggests different profiles of immune checkpoints dependent on the method of stimulation. This highlights importance of expansion method in the function of Vγ9Vδ2 T-cells. Furthermore, this work suggests important candidates for blockade by immune checkpoint therapy in order to increase the successful use of Vγ9Vδ2 T-cells in cancer immunotherapy.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A246-A246
Author(s):  
Yang Liu ◽  
Yan Zhang ◽  
Xuexiang Du ◽  
Mingyue Liu ◽  
Xianfeng Fang ◽  
...  

BackgroundAnti-CTLA-4 antibodies have brought about limited clinical benefit because severe toxicity limits dosing levels and/or duration. We used CTLA-4 knockin mice to screen for antibodies with higher anti-tumor activity but lower autoimmunity. We have revealed that the key for better safety and preclinical efficacy is preservation of CTLA-4 for immune tolerance and intratumorial Treg depletion. Our work established that, independent of blocking activities, mAbs that preserve CTLA-4 recycling maintain the physiological immune tolerance checkpoint function while allowing more efficient and selective elimination of tumor-infiltrating regulatory T cells, resulting in highest efficacy and lowest toxicity and was thus developed for clinical testing of all antibodies tested.1–6 The antibody with best safety and efficacy profile, ONC-392 was developed for clinical testing. The first-in human studies showed that ONC-392 is safe and well tolerated. Remarkably, no irAE has been reported among patients who has received repeated dosing of 3.0 mg/kg and 10.0 mg/kg of ONC-392. The molecular and cellular characterization of ONC-392 will be presented.MethodsIn vitro binding and disassociation assay were determined between pH 4.0–7.0. The intracellular traffic of both antibodies and CTLA-4 molecules were visualized by confocal microscopy. The binding to human and mouse FcgRI, IIA, IIB, and III (A), FcRn as well as mouse FcgRIV were evaluated by surface plasmon resonance (SPR). Depletion of regulatory T cells in tumor and lymphoid tissues were determined by flow cytometry.ResultsONC-392 is a pH-sensitive antibody that preserves CTLA-4 recycling. By preserving cell surface CTLA-4, Onco-392 preserves immune tolerance. Preserving CTLA-4 on tumor-infiltrating Treg contribute to more effective immunotherapy. In addition to its unique feature of pH sensitive binding, OncoC4 also have several important features in Fc. ONC-392 shown comparable binding to human FcgRI and IIIA as wild-type IgG1s. As expected from the mutations introduced, ONC-392 show about 6 fold higher affinity for FcRn than wild-type IgG1. Interestingly, ONC-392 has shown 7–10-fold reduction to FcgRIIB, which is generally considered to be a negative signaling FcR. ONC-392 binding to mouse FcgRI-IV was lower that WT IgG1.ConclusionsUnlike other clinical anti-CTLA-4 antibodies, ONC-392 preserves CTLA-4 recycling and thus Treg function in the peripheral tissues. The higher cell surface CTLA-4 allows more efficient Treg depletion in the tumor microenvironment. In addition, despite reduced binding to mouse activating Fc?RI, III/IV, ONC-392 was more effective in intratumor Treg depletion in the mice. Therefore, lacking negative signaling from Fc?RIIB may also contribute to its anti-tumor activity.Trial RegistrationNCT04140526ReferencesDu X, et al. Uncoupling therapeutic from immunotherapy-related adverse effects for safer andeffective anti-CTLA-4 antibodies in CTLA4 humanized mice. Cell Res 2018;28:433–447.Du X, et al. A reappraisal of CTLA-4 checkpoint blockade in cancer immunotherapy. Cell Res 2018;28:416–432.Liu Y, Zheng P. How does an anti-CTLA-4 antibody promote cancer immunity? Trends Immunol 2018;39:953–956.Zhang Y, et al. Hijacking antibody-induced CTLA-4 lysosomal degradation for safer and more effective cancer immunotherapy. Cell Res 2019;29:609–627.Liu Y, Zheng P. Preserving the CTLA-4 checkpoint for safer and more effective cancer immunotherapy. Trends Pharmacol Sci 2020;41(1):4–12.Zhang P, et al. Mechanism- and immune landscape-based ranking of therapeutic responsiveness of 22 major human cancers to next generation anti-CTLA-4 antibodies. Cancers 2020;12:284.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A5.1-A5
Author(s):  
A Martinez-Usatorre ◽  
E Kadioglu ◽  
C Cianciaruso ◽  
B Torchia ◽  
J Faget ◽  
...  

BackgroundImmune checkpoint blockade (ICB) with antibodies against PD-1 or PD-L1 may provide therapeutic benefits in patients with non-small cell lung cancer (NSCLC). However, most tumours are resistant and cases of disease hyper-progression have also been reported.Materials and MethodsGenetically engineered mouse models of KrasG12Dp53null NSCLC were treated with cisplatin along with antibodies against angiopoietin-2/VEGFA, PD-1 and CSF1R. Tumour growth was monitored by micro-computed tomography and the tumour vasculature and immune cell infiltrates were assessed by immunofluorescence staining and flow cytometry.ResultsCombined angiopoietin-2/VEGFA blockade by a bispecific antibody (A2V) modulated the vasculature and abated immunosuppressive macrophages while increasing CD8+effector T cells in the tumours, achieving disease stabilization comparable or superior to cisplatin-based chemotherapy. However, these immunological responses were unexpectedly limited by the addition of a PD-1 antibody, which paradoxically enhanced progression of a fraction of the tumours through a mechanism involving regulatory T cells and macrophages. Elimination of tumour-associated macrophages with a CSF1R-blocking antibody induced NSCLC regression in combination with PD-1 blockade and cisplatin.ConclusionsThe immune cell composition of the tumour determines the outcome of PD-1 blockade. In NSCLC, high infiltration of regulatory T cells and immunosuppressive macrophages may account for tumour hyper-progression upon ICB.Disclosure InformationA. Martinez-Usatorre: None. E. Kadioglu: None. C. Cianciaruso: None. B. Torchia: None. J. Faget: None. E. Meylan: None. M. Schmittnaegel: None. I. Keklikoglou: None. M. De Palma: None.


2019 ◽  
Vol 147 ◽  
pp. 104353 ◽  
Author(s):  
Rana Shafabakhsh ◽  
Mohammad Hossein Pourhanifeh ◽  
Hamid Reza Mirzaei ◽  
Amirhossein Sahebkar ◽  
Zatollah Asemi ◽  
...  

2018 ◽  
Vol 1417 (1) ◽  
pp. 104-115 ◽  
Author(s):  
Kohei Shitara ◽  
Hiroyoshi Nishikawa

2014 ◽  
Vol 27 ◽  
pp. 1-7 ◽  
Author(s):  
Hiroyoshi Nishikawa ◽  
Shimon Sakaguchi

Sign in / Sign up

Export Citation Format

Share Document