scholarly journals In Situ Titanium Composites: XRD Study of Secondary Phases Tied to the Processing Conditions and Starting Materials

Author(s):  
Eva María Pérez-Soriano ◽  
Cristina M. Arévalo-Mora ◽  
Isabel Montealegre-Meléndez
2017 ◽  
Vol 255 ◽  
pp. 127-144 ◽  
Author(s):  
D. Burkle ◽  
R. De Motte ◽  
W. Taleb ◽  
A. Kleppe ◽  
T. Comyn ◽  
...  

2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Mathieu Debure ◽  
Yannick Linard ◽  
Christelle Martin ◽  
Francis Claret

Abstract Silicate glasses are durable materials but laboratory experiments reveal that elements that derive from their environment may induce high corrosion rates and reduce their capacity to confine high-level radioactive waste. This study investigates nuclear-glass corrosion in geological media using an in situ diffusion experiment and multi-component diffusion modelling. The model highlights that the pH imposed by the Callovo–Oxfordian (COx) claystone host rock supports secondary-phase precipitation and increases glass corrosion compared with pure water. Elements from the COx rock (mainly Mg and Fe) form secondary phases with Si provided by the glass, which delay the establishment of a passivating interface. The presence of elements (Mg and Fe) that sustain glass alteration does not prevent a significant decrease in the glass-alteration rate, mainly due to the limited species transport that drives system reactivity. These improvements in the understanding of glass corrosion in its environment provide further insights for predictive modelling over larger timescales and space.


2002 ◽  
Vol 29 (5) ◽  
pp. 331-340 ◽  
Author(s):  
F. Cámara ◽  
M. A. Carpenter ◽  
M. C. Domeneghetti ◽  
V. Tazzoli

2007 ◽  
Vol 990 ◽  
Author(s):  
Chia-Jeng Chung ◽  
David Field ◽  
No-Jin Park ◽  
Christy Woo

ABSTRACTGrain growth in polycrystalline films is controlled by the energetics of the surface, interface and grain boundaries as well as strain energy. The unique character of damascene lines fabricated from electroplated Cu films introduces the additional considerations of bath chemistry and geometric constraints. The moderate stacking fault energy of Cu allows for the development of a substantial twin fraction for certain growth conditions. This paper discusses in-situ observation of grain growth in Cu films and lines under various processing conditions. It is shown that for thicker films and for structures constrained within damascene trenches the energetics of twin boundary formation play a large role in texture development of these structures.


1991 ◽  
Vol 237 ◽  
Author(s):  
Richard D. Robinson ◽  
Ioannis N. Miaoulis

ABSTRACTThis paper presents a new experimental method to investigate solid-liquid interface morphologies during Zone-Melting-Recrystallization at lower than the typical processing temperatures. Gallium films were used as a substitute for silicon films. In situ preliminary investigation identified three phenomena typically occurring during ZMR of silicon films: a) Transition from planar to dendritic to cellular morphologies was observed for different processing conditions; b) cell period proved to be dependant on scanning velocity; c) instabilities at the solidification interface at low heating strip temperatures were caused by supercooling and optical property variations as the material changed phase.


2020 ◽  
Vol 6 (22) ◽  
pp. eaba4542 ◽  
Author(s):  
Chenyi Mao ◽  
Min Yen Lee ◽  
Jing-Ru Jhan ◽  
Aaron R. Halpern ◽  
Marcus A. Woodworth ◽  
...  

Fluorescence microscopy is a workhorse tool in biomedical imaging but often poses substantial challenges to practitioners in achieving bright or uniform labeling. In addition, while antibodies are effective specific labels, their reproducibility is often inconsistent, and they are difficult to use when staining thick specimens. We report the use of conventional, commercially available fluorescent dyes for rapid and intense covalent labeling of proteins and carbohydrates in super-resolution (expansion) microscopy and cleared tissue microscopy. This approach, which we refer to as Fluorescent Labeling of Abundant Reactive Entities (FLARE), produces simple and robust stains that are modern equivalents of classic small-molecule histology stains. It efficiently reveals a wealth of key landmarks in cells and tissues under different fixation or sample processing conditions and is compatible with immunolabeling of proteins and in situ hybridization labeling of nucleic acids.


Sign in / Sign up

Export Citation Format

Share Document