scholarly journals On the Use of Low-Cost RGB-D Sensors for Autonomous Pothole Detection with Spatial Fuzzy c-Means Segmentation

Author(s):  
Yashon Ombado Ouma

The automated detection of pavement distress from remote sensing imagery is a promising but challenging task due to the complex structure of pavement surfaces, in addition to the intensity of non-uniformity, and the presence of artifacts and noise. Even though imaging and sensing systems such as high-resolution RGB cameras, stereovision imaging, LiDAR and terrestrial laser scanning can now be combined to collect pavement condition data, the data obtained by these sensors are expensive and require specially equipped vehicles and processing. This hinders the utilization of the potential efficiency and effectiveness of such sensor systems. This chapter presents the potentials of the use of the Kinect v2.0 RGB-D sensor, as a low-cost approach for the efficient and accurate pothole detection on asphalt pavements. By using spatial fuzzy c-means (SFCM) clustering, so as to incorporate the pothole neighborhood spatial information into the membership function for clustering, the RGB data are segmented into pothole and non-pothole objects. The results demonstrate the advantage of complementary processing of low-cost multisensor data, through channeling data streams and linking data processing according to the merits of the individual sensors, for autonomous cost-effective assessment of road-surface conditions using remote sensing technology.


2021 ◽  
Vol 6 (1) ◽  
pp. 024-034
Author(s):  
Atriyon Julzarika ◽  
Harintaka Harintaka ◽  
Tatik Kartika

Vegetation height is an important parameter in monitoring peatlands. Vegetation height can be estimated using remote sensing. Vegetation height can be estimated by utilizing DSM and DTM. The data that can be used are LiDAR, X-SAR, and SRTM C. In this study, LiDAR data is used for DSM2018 and DTM2018 extraction. The purpose of this research is to detect the vegetation height in Central Kalimantan peatlands using remote sensing technology. The research location is in Bakengbongkei, Kalampangan, Central Kalimantan. The integration of X-SAR and SRTM C is used for DSM2000 and DTM2000 extraction. DSM2000, DTM2000, DSM2018, and DTM2018 performed height error correction with tolerance of 1.96? (95%). Then do the geoid undulation correction to EGM2008. The results obtained are DSM and DTM with a similar height reference field. If it meets these conditions it can be calculated the vegetation height estimation. Vegetation height can be obtained using the Differential DEM method. The Changing in vegetation height from 2000 to 2018 can be estimated from the difference in vegetation height from 2000 to vegetation height in 2018. Results of spatial information on vegetation height and its changes need to be tested for the accuracy. This accuracy-test includes a cross section test, height difference test, and comparison with measurements of vegetation height in the field. The results of this research can be used to monitor the changing the vegetation height in peatlands.



Author(s):  
J. Schulz

<p><strong>Abstract.</strong> Currently, satellite-based systems and UAVs are very popular in the investigation of natural disasters. Both systems have their justification and advantages &amp;ndash; but one should not forget the airborne remote sensing technology. The presentation shows with three examples very clearly how airborne remote sensing is still making great progress and in many cases represents the optimal method of data acquisition.</p> <p>The airborne detection of forest damages (especially currently the bark beetle in spruce stands) can determine the pest attack using CIR aerial images in combination with ALS and hyperspectral systems &amp;ndash; down to the individual tree. Large forest areas of 100 sqkm and more can be recorded from planes on one day (100 sqkm with 10cm GSD on one day).</p> <p>Flood events &amp;ndash; such as on the Elbe in 2013 &amp;ndash; were recorded by many satellites. However, many evaluations require highresolution data (GSD 10cm), e.g. to clarify insurance claims. Here the aircraft system, which was able to fly below the cloud cover and was constantly flying at the height level of the flood peak, proved to be unbeatable.</p> <p>The phenomenon of urban flash floods is one of the consequences of climate change. Cities are not in a position to cope with the water masses of extreme rain events and so are confronted with major damages. In Germany, a number of cities are already preparing to manage short-term but extreme water masses. The complicated hydrographic and hydraulic calculations and simulations require above all one thing &amp;ndash; a precise data basis. This involves, for example, the height of kerbstones and the recording of every gully and every obstacle. Such city-wide data can only be collected effectively by photogrammetric analysis of aerial photography (GSD 5 to 10cm).</p>



Author(s):  
Xueling Zhang ◽  
Dayu Zhang

The research of digital landscape architecture springs up in recent years. The emerging digital technology provides a rational and objective method to mine and quantify the endogenous laws of landscape architecture. Remote sensing (RS) technology has become a new growth point in the current research and design of landscape spatial information. To develop the professional teaching of landscape architecture, it is important to fully integrate the RS technology into the teaching system of spatial information technology, carry out systematic spatial information quantification and research-based teaching of landscape architecture, and collaboratively promote the teaching of landscape architecture design. This paper firstly analyzes the integration and application potential of RS technology into landscape architecture. Considering the demand and trend of information-based teaching of landscape architecture, the authors integrated the relevant technologies into an RS teaching platform for landscape architecture, and summarized an application model of RS technology in the teaching of landscape architecture theories and practices. Moreover, a landscape spatial information chain, which is question-oriented, task-driven, and exploration-based, was constructed to promote the synergistic development between the students’ research and practice ability under spatial information integration.



Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 643 ◽  
Author(s):  
Elena Lucchi ◽  
Luisa Dias Pereira ◽  
Mirco Andreotti ◽  
Roberto Malaguti ◽  
David Cennamo ◽  
...  

This article aims to properly assess the hygrothermal properties of walls located in historic buildings, this study discloses the development of a remote sensing technology compatible with an in-situ measurement implemented in Palazzo Tassoni (Italy). As required by the international recommendations adapted to cultural heritage (CH), this monitoring system balances CH conservation, performance aspects and economic costs using an integrated multidisciplinary approach. Electronics for measurement of environmental parameters is composed of sensor measurements, data acquisition system and data storage and communication system. Data acquisition system, equipped with standard modbus-rtu interface, is designed to run standalone and it is based on two cloned single board PCs to reduce the possibility of data loss. In order to reduce the costs, RaspberryPI single board PCs were chosen. These run a C/C++ software based on standard modbus library and designed to implement multi-client server TCP/IP to allow communication with other devices. Storage and communication systems are based on an industrial PC; it communicates with sensor measurements’ system through a modbus-TCPIP bridge. PC runs a Labview software to provide data storage on a local database and graphical user interface to properly see all acquired data. Herein, some sensing options and approaches of measurement are described, unveiling different possible ways of enhancing the retrofit of CH with adapted technology.



Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 188 ◽  
Author(s):  
Kim Calders ◽  
Inge Jonckheere ◽  
Joanne Nightingale ◽  
Mikko Vastaranta

Advances in close-range and remote sensing technologies drive innovations in forest resource assessments and monitoring at varying scales. Data acquired with airborne and spaceborne platforms provide us with higher spatial resolution, more frequent coverage and increased spectral information. Recent developments in ground-based sensors have advanced three dimensional (3D) measurements, low-cost permanent systems and community-based monitoring of forests. The REDD+ mechanism has moved the remote sensing community in advancing and developing forest geospatial products which can be used by countries for the international reporting and national forest monitoring. However, there still is an urgent need to better understand the options and limitations of remote and close-range sensing techniques in the field of degradation and forest change assessment. This Special Issue contains 12 studies that provided insight into new advances in the field of remote sensing for forest management and REDD+. This includes developments into algorithm development using satellite data; synthetic aperture radar (SAR); airborne and terrestrial LiDAR; as well as forest reference emissions level (FREL) frameworks.



2013 ◽  
Vol 765-767 ◽  
pp. 2374-2378
Author(s):  
Shi Wei Dong ◽  
Hong Li ◽  
Dan Feng Sun ◽  
Wei Wei Zhang ◽  
Lian Di Zhou

As a new high-technology with large amount of information, strong temporal resolution, high efficiency and low cost, remote sensing provided a useful tool for related researches of land use and land cover in different spatial and temporal scales. Firstly, concepts and characteristics of the remote sensing technology were introduced. Secondly, its applications were elaborated in land use and land cover such as land resources survey, land resources change monitoring, land use evaluation, overall planning of land use and land consolidation aspects. At last, future application trends and several aspects noticed were pointed out.



CONVERTER ◽  
2021 ◽  
pp. 86-93
Author(s):  
Xu Chen, Kuan He, Yuntong Liu

UAV aerial remote sensing system has the characteristics of strong real-time, flexible, high image resolution and low cost, which can be applied to map mapping tasks under various terrain. In this paper, the key technology of UAV Remote Sensing Surveying and mapping, the process of image processing, the research of mosaic method and the field application of remote sensing technology are studied. Aiming at the characteristics of UAV image with high resolution and small image frame, three methods of image map making are proposed, namely, single image geometric correction method, mosaic correction method and aerial triangulation method. This paper focuses on the key technical problems of the three methods, and makes a comprehensive analysis and experimental verification of each method from the aspects of mapping effect, accuracy and efficiency. The experimental results show that the UAV remote sensing technology can meet the real-time basic surveying and mapping data requirements of urban mapping. This method can meet the needs of 1:500 high-precision mapping. The system can reduce the cost and improve the usability when it is used to update the basic data of Urban Surveying and mapping.



2014 ◽  
Vol 926-930 ◽  
pp. 4069-4072
Author(s):  
Wen Jie Wang

As the development of the advanced remote sensing devices, various high-quality remote sensing data provide us with reliable evidence for tourism resource investigating. In contrast to the traditional method for tourism resource investigation, the remote sensing data based method is intelligent and with low cost in manpower resource. Moreover, the reliance of the given results is enhanced. This paper proposed a remote sensing image processing method for the tourism resource investigation. First, the remote sensing image is segmented. Then the segmented image region is recognized, the tourism resource and the irrelative objects is classified. Finally, the tourism resource in the remote sensing image is given and processed by the mathematical method.



Sign in / Sign up

Export Citation Format

Share Document