scholarly journals An Efficient Approach Based on the Near-Field Technique to Solve EMI Problems: Application to an AC/DC Flyback Converter

Author(s):  
Bessem Zitouna ◽  
Jaleleddine Ben Hadj Slama

Flyback converters have been widely used in low- and high-power applications because of their simplicity and low cost. However, they incur electromagnetic compatibility problems which are more difficult to control. The present chapter proposes an efficient modeling method based on the near-field technique to solve real-world radiation problems of the power electronics circuits. Firstly, for the characterization of an AC/DC flyback converter, several experimental measurements of the magnetic near field are performed in the time domain over the converter. Subsequently, we have applied the time domain electromagnetic inverse method based on the genetic algorithms on the measured signals to find the equivalent radiating sources of the studied circuit. The accuracy and the efficiency of the proposed approach have been demonstrated by the good agreement between cartographies of the near magnetic field components calculated using the developed model and those measured. Finally, the developed equivalent model has been used to predict cartographies of other components of the magnetic field which will be compared to measured cartographies. This confirms that the identified equivalent sources can represent real sources in the studied structure. The proposed method could be used for diagnosis and fault location in power electronics systems.

Geophysics ◽  
1974 ◽  
Vol 39 (3) ◽  
pp. 355-355
Author(s):  
Shri Krishna Singh

In this paper Verma obtains a time‐domain solution by inverting the frequency‐domain solution given by Wait (1952). However, it has been recently pointed out by Singh (1973a) (see also Wait, 1973) that there is an error in the quasi‐static solution of Wait. Wait neglected the axially symmetric inducted electric current in the cylinder giving rise to a secondary transverse magnetic field outside (the n=0 term in the scattered wavefield). Singh (1973a) has shown that this term dominates. [It should be noted that Wait in his other works on the cylinder retains this term (e.g., Wait, 1959).] It is clear that this term would be dominant in the time‐domain also. This has been shown by Singh (1972, 1973b). Since the theoretical solution given by Verma in the paper under discussion is incomplete, his interpretation schemes are meaningless.


2011 ◽  
Vol 110-116 ◽  
pp. 971-976
Author(s):  
Hong You Wang ◽  
Jin Guang Li

Micro-strip line is a kind of transmission line that is the most widely used in microwave integrated circuit. With the development of microwave integrated circuits and the increasing work frequency of the micro-strip line, a higher requirement for its electromagnetic compatibility has been raised. Finite-Difference Time-Domain (FDTD) method has characteristics of good adaptability in the analysis of electromagnetic compatibility issues and superiority in complexity of the structure modeling. For these reasons, this Article uses FDTD method which is widely used in electromagnetic field calculation to analyze the time-domain of micro-strip line, calculates its current and voltage induced in ports and discuss the response feature under different radiation conditions.


1992 ◽  
Vol 59 (3) ◽  
pp. 596-603 ◽  
Author(s):  
S. K. Datta ◽  
T. H. Ju ◽  
A. H. Shah

The surface responses due to impact load on an infinite uniaxial graphite/epoxy plate containing a horizontal crack is investigated both in time and frequency domain by using a hybrid method combining the finite element discretization of the near-field with boundary integral representation of the field outside a contour completely enclosing the crack. This combined method leads to a set of linear unsymmetric complex matrix equations, which are solved to obtain the response in the frequency domain by biconjugate gradient method. The time-domain response is then obtained by using an FFT. In order to capture the time-domain characteristics accurately, high-order finite elements have been used. Also, both the six-node singular elements and eight-node transition elements are used around the crack tips to model the crack-tip singularity. From the numerical results for surface responses it seems possible to clearly identify both the depth and length of this crack.


2012 ◽  
Vol 1 (2) ◽  
pp. 26
Author(s):  
Y. Liu ◽  
B. Ravelo ◽  
J. Ben Hadj Slama

This paper is devoted on the application of the computational method for calculating the transient electromagnetic (EM) near-field (NF) radiated by electronic structures from the frequency-dependent data for the arbitrary wave form perturbations i(t). The method proposed is based on the fast Fourier transform (FFT). The different steps illustrating the principle of the method is described. It is composed of three successive steps: the synchronization of the input excitation spectrum I(f) and the given frequency data H0(f), the convolution of the two inputs data and then, the determination of the time-domain emissions H(t). The feasibility of the method is verified with standard EM 3D simulations. In addition to this method, an extraction technique of the time-dependent z-transversal EM NF component Xz(t) from the frequency-dependent x- and y- longitudinal components Hx(f) and Hy(f) is also presented. This technique is based on the conjugation of the plane wave spectrum (PWS) transform and FFT. The feasibility of the method is verified with a set of dipole radiations. The method introduced in this paper is particularly useful for the investigation of time-domain emissions for EMC applications by considering transient EM interferences (EMIs).


Author(s):  
Francesco D'Agostino ◽  
Flaminio Ferrara ◽  
Claudio Gennarelli ◽  
Rocco Guerriero ◽  
Massimo Migliozzi

Sign in / Sign up

Export Citation Format

Share Document