scholarly journals Trace Elements in Volcanic Environments and Human Health Effects

Author(s):  
Diana Paula Silva Linhares ◽  
Patrícia Ventura Garcia ◽  
Armindo dos Santos Rodrigues

Trace elements play an essential role in the normal metabolism and physiological functions of living beings. The distribution and concentration of trace elements in the environment results from both anthropogenic and natural origins; this chapter will focus on volcanism as one of the major natural sources of trace elements. In volcanic areas, the emissions and deposits of volcanogenic elements are key factors for geochemical mobility of trace elements and their distribution in the environment and, their effects on animals and human health. Volcanic areas have been associated with increased incidence of several diseases, such as fluorosis or even some types of cancer, leveraging the studies on the potential of this natural phenomenon as a promoter of diseases. As the Azores Archipelago is a volcanic area, with several manifestations of active volcanism, this region presents itself as an ideal study scenario for a multidisciplinary approach on environmental health problems, such as the exposure to toxic and/or deficient levels of trace elements. This chapter will present an integrated approach, describing the occurrence, the monitoring of trace elements and their characterization, the biological role in human body, and the human biomonitoring and health risk assessment, using case studies as examples.

2020 ◽  
Author(s):  
Harshad Vijay Kulkarni ◽  
◽  
Michael Vega ◽  
Karen Johannesson ◽  
Robert Taylor ◽  
...  

2021 ◽  
Vol 10 (13) ◽  
pp. 2903
Author(s):  
Jiezhong Chen ◽  
Luis Vitetta

The gut microbiota is well known to exert multiple benefits on human health including protection from disease causing pathobiont microbes. It has been recognized that healthy intestinal microbiota is of great importance in the pathogenesis of COVID-19. Gut dysbiosis caused by various reasons is associated with severe COVID-19. Therefore, the modulation of gut microbiota and supplementation of commensal bacterial metabolites could reduce the severity of COVID-19. Many approaches have been studied to improve gut microbiota in COVID-19 including probiotics, bacterial metabolites, and prebiotics, as well as nutraceuticals and trace elements. So far, 19 clinical trials for testing the efficacy of probiotics and synbiotics in COVID-19 prevention and treatment are ongoing. In this narrative review, we summarize the effects of various approaches on the prevention and treatment of COVID-19 and discuss associated mechanisms.


2021 ◽  
Vol 97 ◽  
pp. 103754
Author(s):  
Naghmeh Soltani ◽  
Michel Marengo ◽  
Behnam Keshavarzi ◽  
Farid Moore ◽  
Peter S. Hooda ◽  
...  

2009 ◽  
Vol 7 (S1) ◽  
pp. S75-S93 ◽  
Author(s):  
Mark D. Sobsey ◽  
Suresh D. Pillai

A consideration of available evidence for some known and well-characterized waterborne pathogens suggests that the diversity of pathogen virulence mechanisms and properties is too great to specifically predict the emergence and future human health impacts of new waterborne pathogens. However, some future emerging pathogens are existing microbes that will be discovered to cause disease. Some will arise from existing ones by either predictable evolutionary and adaptation changes or by unpredictable changes involving a variety of biotic and abiotic mechanisms. Many, and perhaps most, emerging waterborne human pathogens will be zoonotic agents or come from other non-human reservoirs. The emergence of some waterborne pathogens will be related to antibiotic use, resulting in emerging antibiotic-resistant waterborne pathogens. Reliably predicting pathogen emergence and human health effects based on VFARs or other properties of microbes and their hosts is not possible at this time. This is because of (1) the diversity of microbes and their virulence and pathogenicity properties, (2) their ability to change unpredictably, (3) their intimate and diverse interrelationships with a myriad of hosts and dynamic natural and anthropogenic environments and (4) the subtle variations in the immune status of individuals. The best available approach to predicting waterborne pathogen emergence is through vigilant use of microbial, infectious disease and epidemiological surveillance. Understanding the microbial metagenome of the human body can also lead to a better understanding of how we define and characterize pathogens, commensals and opportunists.


2005 ◽  
Vol 26 (4-5) ◽  
pp. 233-234 ◽  
Author(s):  
Cesar G. Fraga ◽  
Patricia I. Oteiza ◽  
Carl L. Keen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document