scholarly journals Modulation of Gut Microbiota for the Prevention and Treatment of COVID-19

2021 ◽  
Vol 10 (13) ◽  
pp. 2903
Author(s):  
Jiezhong Chen ◽  
Luis Vitetta

The gut microbiota is well known to exert multiple benefits on human health including protection from disease causing pathobiont microbes. It has been recognized that healthy intestinal microbiota is of great importance in the pathogenesis of COVID-19. Gut dysbiosis caused by various reasons is associated with severe COVID-19. Therefore, the modulation of gut microbiota and supplementation of commensal bacterial metabolites could reduce the severity of COVID-19. Many approaches have been studied to improve gut microbiota in COVID-19 including probiotics, bacterial metabolites, and prebiotics, as well as nutraceuticals and trace elements. So far, 19 clinical trials for testing the efficacy of probiotics and synbiotics in COVID-19 prevention and treatment are ongoing. In this narrative review, we summarize the effects of various approaches on the prevention and treatment of COVID-19 and discuss associated mechanisms.

2019 ◽  
Vol 16 (1) ◽  
pp. 7-18 ◽  
Author(s):  
Svetlana G. Makarova ◽  
Leyla S. Namazova-Baranova ◽  
Oksana A. Ereshko ◽  
Dmitry S. Yasakov ◽  
Pavel E. Sadchikov

Intestinal microbiota is the factor that identifies considerably the human health. The impact of the microbial factor on a child begins long before his birth. Children have certain features in forming of immune response and intestinal microbiocenosis even before birth. Decline in diversity of intestinal microbiota is common in children with allergic disease even during first months of life, before allergic pathology development. Capabilities for microbiota development adjustment are sufficiently restricted. However it is clinically proven that early (within the first hours of life) breastfeeding attachment, breastfeeding itself within at least first 6 months of life, the use of prebiotics in milk formulas as well as the use of probiotics can give positive results on allergy management. In this review we present results of recent metaanalyses and consensus papers of international medical communities about use of probiotics and prebiotics in prevention and treatment of allergic diseases. Despite great scientific and practical interest to this topic, authors of metaanalyses bring our attention to the lack of evidence-based clinical trials.


2020 ◽  
Vol 150 (7) ◽  
pp. 1680-1692 ◽  
Author(s):  
Leah T Stiemsma ◽  
Reine E Nakamura ◽  
Jennifer G Nguyen ◽  
Karin B Michels

ABSTRACT The human microbiota is a key contributor to many aspects of human health and its composition is largely influenced by diet. There is a growing body of scientific evidence to suggest that gut dysbiosis (microbial imbalance of the intestine) is associated with inflammatory and immune-mediated diseases (e.g., inflammatory bowel disease and asthma). Regular consumption of fermented foods (e.g., kimchi, kefir, etc.) may represent a potential avenue to counter the proinflammatory effects of gut dysbiosis. However, an assessment of the available literature in this research area is lacking. Here we provide a critical review of current human intervention studies that analyzed the effect of fermented foods on the composition and/or function of the human gut microbiota. A total of 19 human intervention studies were identified that met this search criteria. In this review, we discuss evidence that consumption of fermented foods may modify the gut microbiota in humans. Further, there is cursory evidence to suggest that gut microbiota compositional changes mediate associations between fermented food consumption and human health outcomes. Although promising, there remains considerable heterogeneity in the human populations targeted in the intervention studies we identified. Larger longitudinal feeding studies with longer follow-up are necessary to confirm and enhance the current data. Further, future studies should consider analyzing microbiota function as a means to elucidate the mechanism linking fermented food consumption with human health. This review highlights methodologic considerations for intervention trials, emphasizing an expanse of research opportunities related to fermented food consumption in humans.


2020 ◽  
Vol 4 (1-2) ◽  
pp. 8
Author(s):  
Ariani Dewi Widodo ◽  
Mohammad Juffrie

Over the last two decades, the C-section rate has increased worldwide. It is understood that colonization patterns of intestinal microbiota in infant delivery in C-section vary from those that were delivered vaginally. These different microbial pattern and diversity will impact and respond to immune and dysbiosis-related diseases. This article examined the effect of C-section on gut microbiota in children.Recent Findings: Newborns are influenced by various factors, including mode of delivery, feeding, nutrition, hospitalization, antibiotic and host gene. Several studies have shown that infants with C-section have lower Bifidobacterium while others have shown lower abundance of Enterobactericeae and Bacteroides in infants with C-section compared to infants born vaginally. Although the mode of delivery is only one factor that influences infant microbiota composition, studies conclude that reduced microbial exposure during the C-section is important because it can affect dysbiosis several years after birth. Good microbiota is a key source of microbial-driven immune regulation, changes in normal patterns of bacterial colonization can alter the immune development outcome and may predispose to certain immune-related disorders later in life.Summary: The composition and concentrations of intestinal microbiota between vaginally and C-section born infants are significantly different. Among C-section infants, gut microbiota is associated with lower diversity and therefore induces dysbiosis, which can affect immune development and may predispose to some immune disorders, i.e. allergies in particular. Nutritional approach with pre-, probiotics, and/or synbiotics can have a promising effect early in life in preventing gut dysbiosis.


2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S161-S161
Author(s):  
M Xu ◽  
Y Shen ◽  
M Cen

Abstract Background Inflammatory bowel disease (IBD) is associated with gut dysbiosis and dysregulation of bile acid metabolism. A high luminal content of deoxycholic acid (DCA) with consumption of a Westernized diet is implicated in the pathogenesis of IBD. The aim of the study is to explore the role of intestinal microbiota and bile acid metabolism in mice with DCA-induced intestinal inflammation. Methods 4-week-old wild-type C57BL mice were fed with AIN-93G (control diet), AIN-93G+0.2% DCA, AIN-93G+0.2% DCA+6 weeks of fexaramine (FXR agonist), or AIN-93G+0.2% DCA+antibiotic cocktail for 24 weeks. Histopathology, Western blotting, and qPCR were performed on the intestinal tissue. Fecal microbiota was analyzed by 16S rDNA sequencing. Fecal bile acid and short-chain fatty acid (SCFA) levels were analyzed by chromatography. Results Gut dysbiosis and enlarged bile acid pool were observed in DCA-treated mice, accompanied by a lower farnesoid X receptor (FXR) activity in the intestine. Administration of fexaramine mitigated DCA-induced intestinal injury, restored intestinal FXR activity, activated fibroblast growth factor 15, and normalized bile acid metabolism. Furthermore, fexaramine administration increased the abundance of SCFA-producing bacteria. Depletion of the commensal microbiota with antibiotics decreased the diversity of the intestinal microbiota, attenuated bile acid synthesis, and reduced intestinal inflammation induced by DCA. Conclusion DCA induced-intestinal inflammation is associated with alterations of gut microbiota and bile acid profiles. Interventions targeting the gut microbiota-FXR signaling pathway may reduce DCA-induced intestinal disease.


Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 521 ◽  
Author(s):  
Antonella Fattorusso ◽  
Lorenza Di Genova ◽  
Giovanni Dell’Isola ◽  
Elisabetta Mencaroni ◽  
Susanna Esposito

In recent years, there has been an emerging interest in the possible role of the gut microbiota as a co-factor in the development of autism spectrum disorders (ASDs), as many studies have highlighted the bidirectional communication between the gut and brain (the so-called “gut-brain axis”). Accumulating evidence has shown a link between alterations in the composition of the gut microbiota and both gastrointestinal and neurobehavioural symptoms in children with ASD. The aim of this narrative review was to analyse the current knowledge about dysbiosis and gastrointestinal (GI) disorders in ASD and assess the current evidence for the role of probiotics and other non-pharmacological approaches in the treatment of children with ASD. Analysis of the literature showed that gut dysbiosis in ASD has been widely demonstrated; however, there is no single distinctive profile of the composition of the microbiota in people with ASD. Gut dysbiosis could contribute to the low-grade systemic inflammatory state reported in patients with GI comorbidities. The administration of probiotics (mostly a mixture of Bifidobacteria, Streptococci and Lactobacilli) is the most promising treatment for neurobehavioural symptoms and bowel dysfunction, but clinical trials are still limited and heterogeneous. Well-designed, randomized, placebo-controlled clinical trials are required to validate the effectiveness of probiotics in the treatment of ASD and to identify the appropriate strains, dose, and timing of treatment.


2020 ◽  
Vol 21 (22) ◽  
pp. 8443
Author(s):  
Jayoon Moon ◽  
Chang Ho Yoon ◽  
Se Hyun Choi ◽  
Mee Kum Kim

Using metagenomics, continuing evidence has elicited how intestinal microbiota trigger distant autoimmunity. Sjögren’s syndrome (SS) is an autoimmune disease that affects the ocular surface, with frequently unmet therapeutic needs requiring new interventions for dry eye management. Current studies also suggest the possible relation of autoimmune dry eye with gut microbiota. Herein, we review the current knowledge of how the gut microbiota interact with the immune system in homeostasis as well as its influence on rheumatic and ocular autoimmune diseases, and compare their characteristics with SS. Both rodent and human studies regarding gut microbiota in SS and environmental dry eye are explored, and the effects of prebiotics and probiotics on dry eye are discussed. Recent clinical studies have commonly observed a correlation between gut dysbiosis and clinical manifestations of SS, while environmental dry eye portrays characteristics in between normal and autoimmune. Moreover, a decrease in both the Firmicutes/Bacteroidetes ratio and genus Faecalibacterium have most commonly been observed in SS subjects. The presumable pathways forming the “gut dysbiosis–ocular surface–lacrimal gland axis” are introduced. This review may provide perspectives into the link between the gut microbiome and dry eye, enhance our understanding of the pathogenesis in autoimmune dry eye, and be useful in the development of future interventions.


2021 ◽  
Vol 3 (2) ◽  
pp. 1-6
Author(s):  
Bruno Riccardi ◽  
◽  
Sergio Resta ◽  
Rita Storelli ◽  
◽  
...  

Numerous evidence and clinical trials have been published in recent years on the role of silicon for the maintenance of general well-being and of bones in particular. However, no study has so far investigated which fundamental contribution to health could provide silicon when taken with other trace elements in cases, very frequent, of their insufficient contribution. In this work we present a preliminary open-air study on a group of patients, using an original and innovative formulation containing organic SI G5 plus other trace elements, for the prevention and treatment of osteoarticular diseases of various origins.


2021 ◽  
Vol 14 (5) ◽  
pp. 81-94
Author(s):  
DILYARA D. SAFINA ◽  
◽  
SAYAR R. ABDULKHAKOV ◽  
NAIL B. AMIROV ◽  
◽  
...  

Background. In recent years, much attention has been paid to the importance and role of the gut microbiota in human health maintaining and its composition violations in various diseases. Aim. The aim of the study was to analyze the up-to-date literature on the intestinal microbiota, its composition, role and functions in maintaining human health, as well as on the factors affecting the composition of the intestinal microbiota. Material and methods. An analytical review of published studies on the intestinal microbiota was conducted. Results and discussion. The development of new metagenomic methods for studying the microbiota has led to a fundamental breakthrough in the advancement of ideas about its role, composition and functions in the human body. Despite significant differences in the composition of the gut microbiota in healthy people, the microbiota of a healthy person remains relatively stable throughout life; its composition is influenced by a number of factors: mode of delivery, age, geographic area of residence, genetic characteristics of the person, consumption of related drugs, diet, and others. Treatment with antibiotics may also lead to pronounced changes in the composition of the intestinal microbiota. Other adverse events of antibiotic therapy may include the development of antibiotic-resistant strains of bacteria; resistance may be due to the presence of genes encoding resistance factors to antibacterial drugs. Conclusion. Thus, the gut microbiota plays a tremendous role in maintaining human health and the development of a number of diseases.


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 364
Author(s):  
Farideh Hosseinkhani ◽  
Anne-Charlotte Dubbelman ◽  
Naama Karu ◽  
Amy C. Harms ◽  
and Thomas Hankemeier

Gut microbiota and their metabolic products are increasingly being recognized as important modulators of human health. The fecal metabolome provides a functional readout of the interactions between human metabolism and the gut microbiota in health and disease. Due to the high complexity of the fecal matrix, sample preparation often introduces technical variation, which must be minimized to accurately detect and quantify gut bacterial metabolites. Here, we tested six different representative extraction methods (single-phase and liquid–liquid extractions) and compared differences due to fecal amount, extraction solvent type and solvent pH. Our results indicate that a minimum fecal (wet) amount of 0.50 gram is needed to accurately represent the complex texture of feces. The MTBE method (MTBE/methanol/water, 3.6/2.8/3.5, v/v/v) outperformed the other extraction methods, reflected by the highest extraction efficiency for 11 different classes of compounds, the highest number of extracted features (97% of the total identified features in different extracts), repeatability (CV < 35%) and extraction recovery (≥70%). Importantly, optimization of the solvent volume of each step to the initial dried fecal material (µL/mg feces) offers a major step towards standardization, which enables confident assessment of the contributions of gut bacterial metabolites to human health.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 372 ◽  
Author(s):  
Xu ◽  
Yin ◽  
Zhang ◽  
Lv ◽  
Yang ◽  
...  

Colorectal cancer (CRC) is the second most commonly diagnosed cancer and the third cause of cancer death in the world, while intestinal microbiota is a community of microbes living in human intestine that can potentially impact human health in many ways. Accumulating evidence suggests that intestinal microbiota, especially that from the intestinal bacteria, play a key role in the CRC development; therefore, identification of bacteria involved in CRC development can provide new targets for the CRC diagnosis, prevention, and treatment. Over the past decade, there have been considerable advances in applying 16S rDNA sequencing data to verify associated intestinal bacteria in CRC patients; however, due to variations of individual and environment factors, these results seem to be inconsistent. In this review, we scrutinized the previous 16S rDNA sequencing data of intestinal bacteria from CRC patients, and identified twelve genera that are specifically enriched in the tumor microenvironment. We have focused on their relationship with the CRC development, and shown that some bacteria could promote CRC development, acting as foes, while others could inhibit CRC development, serving as friends, for human health. Finally, we highlighted their potential applications for the CRC diagnosis, prevention, and treatment.


Sign in / Sign up

Export Citation Format

Share Document