scholarly journals Ultrasound-Assisted Preparation Methods of Nanoparticles for Energy-Related Applications

Author(s):  
Christos Vaitsis ◽  
Maria Mechili ◽  
Nikolaos Argirusis ◽  
Eirini Kanellou ◽  
Pavlos K. Pandis ◽  
...  

Ultrasound (US) technology is already into the research field providing a powerful tool of producing nanomaterials or being implicated in decoration procedures of catalyst supports for energy applications and material production. Toward this concept, low or/and high-frequency USs are used for the production of nanoparticles, the decoration of catalytic supported powders (carbon-based, titania, and alumina) with nanoparticles, and the production of metal-organic frameworks (MOFs). MOFs are porous, crystalline materials, which consist of metal centers and organic linkers. Those structures demonstrate high surface area, open metal sites, and large void space. All the above produced materials are used in heterogeneous catalysis, electrocatalysis, photocatalysis, and energy storage. Batteries and fuel cells are popular systems for electrochemical energy storage, and significant progress has been made in nanostructured energy materials in order to improve these storage devices. Nanomaterials have shown favorable properties, such as enhanced kinetics and better efficiency as catalysts for the oxygen reduction reaction (ORR).


Circuit World ◽  
2015 ◽  
Vol 41 (2) ◽  
pp. 80-86 ◽  
Author(s):  
Jagdeep S. Sagu ◽  
Nicola York ◽  
Darren Southee ◽  
K.G.U. Wijayantha

Purpose – The purpose of this paper is to report on the feasibility of the manufacture of printed rechargeable power sources incorporating, in the first instance, electrode structures from the previous study, and moving on to improved electrode structures fabricated, via flexographic printing, using commercially available inks. It has been shown previously that offset lithography, a common printing technique, can be used to make electrodes for energy storage devices such as primary cells. Design/methodology/approach – A pair of the original Ag/C electrodes, printed via offset lithography, were sandwiched together with a PVA-KOH gel electrolyte and then sealed. The resultant structures were characterised using electrochemical techniques and the performance as supercapacitors assessed. Following these studies, electrode structures of the same dimensions, consisting of two layers, a silver-based current collector covered with a high surface area carbon layer, were printed flexographically, using inks, on a melinex substrate. The characterisation and assessment of these structures, as supercapacitors, was determined. Findings – It was found that the supercapacitors constructed using the offset lithographic electrodes exhibited a capacitance of 0.72 mF/cm2 and had an equivalent series resistance of 3.96 Ω. The structures fabricated via flexography exhibited a capacitance of 4 mF/cm2 and had an equivalent series resistance of 1.25 Ω The supercapacitor structures were subjected to bending and rolling tests to determine device performance under deformation and stress. It was found that supercapacitor performance was not significantly reduced by bending or rolling. Originality/value – This paper provides insight into the use of printed silver/carbon electrodes within supercapacitor structures and compares the performance of devices fabricated using inks for offset lithographic printing presses and those made using commercially available inks for flexographic printing. The potential viability of such structures for low-end and cheap energy storage devices is demonstrated.



2014 ◽  
Author(s):  
T. Coskun ◽  
R. Asmatulu

The ability to achieve high surface areas with nanomaterials brought several advancements in energy storage devices and their applications in different industries. Supercapacitors, a new generation of energy storage devises, have quick charge and discharge abilities, and hold as much energy as batteries and other chemical storage devices. The present study focuses on the effects of carbon nanotubes (CNTs) inclusions in polyvinyl alcohol (PVA) electrolytes for the improved capacitance values, which may affect the lifetime, charge holding, and charging and discharging rates of the graphene nanoflake-based supercapacitors. In this research, various supercapacitors were constructed using the reduced graphene oxide nanoflakes, PVA and PVA incorporated with CNTs, and the best candidates were selected for the future considerations. The test results showed that the CNT concentrations of 0.1–1.0wt% in PVA enhanced the capacitance (charge holding capacity) and reduced the internal resistance of the electrolytes significantly. This study may open up new possibilities for the supercapacitors and other energy storage devices currently under developments.



Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 169
Author(s):  
Seong Min Ji ◽  
Anuj Kumar

Sustainable biomass has attracted a great attention in developing green renewable energy storage devices (e.g., supercapacitors) with low-cost, flexible and lightweight characteristics. Therefore, cellulose has been considered as a suitable candidate to meet the requirements of sustainable energy storage devices due to their most abundant nature, renewability, hydrophilicity, and biodegradability. Particularly, cellulose-derived nanostructures (CNS) are more promising due to their low-density, high surface area, high aspect ratio, and excellent mechanical properties. Recently, various research activities based on CNS and/or various conductive materials have been performed for supercapacitors. In addition, CNS-derived carbon nanofibers prepared by carbonization have also drawn considerable scientific interest because of their high conductivity and rational electrochemical properties. Therefore, CNS or carbonized-CNS based functional materials provide ample opportunities in structure and design engineering approaches for sustainable energy storage devices. In this review, we first provide the introduction and then discuss the fundamentals and technologies of supercapacitors and utilized materials (including cellulose). Next, the efficacy of CNS or carbonized-CNS based materials is discussed. Further, various types of CNS are described and compared. Then, the efficacy of these CNS or carbonized-CNS based materials in developing sustainable energy storage devices is highlighted. Finally, the conclusion and future perspectives are briefly conferred.



2020 ◽  
Vol 7 (11) ◽  
pp. 1667-1701 ◽  
Author(s):  
Liang Wu ◽  
Yu Li ◽  
Zhengyi Fu ◽  
Bao-Lian Su

Abstract To address the growing energy demands of sustainable development, it is crucial to develop new materials that can improve the efficiency of energy storage systems. Hierarchically structured porous materials have shown their great potential for energy storage applications owing to their large accessible space, high surface area, low density, excellent accommodation capability with volume and thermal variation, variable chemical compositions and well controlled and interconnected hierarchical porosity at different length scales. Porous hierarchy benefits electron and ion transport, and mass diffusion and exchange. The electrochemical behavior of hierarchically structured porous materials varies with different pore parameters. Understanding their relationship can lead to the defined and accurate design of highly efficient hierarchically structured porous materials to enhance further their energy storage performance. In this review, we take the characteristic parameters of the hierarchical pores as the survey object to summarize the recent progress on hierarchically structured porous materials for energy storage. This is the first of this kind exclusively to survey the performance of hierarchically structured porous materials from different porous characteristics. For those who are not familiar with hierarchically structured porous materials, a series of very significant synthesis strategies of hierarchically structured porous materials are firstly and briefly reviewed. This will be beneficial for those who want to quickly obtain useful reference information about the synthesis strategies of new hierarchically structured porous materials to improve their performance in energy storage. The effect of different organizational, structural and geometric parameters of porous hierarchy on their electrochemical behavior is then deeply discussed. We outline the existing problems and development challenges of hierarchically structured porous materials that need to be addressed in renewable energy applications. We hope that this review can stimulate strong intuition into the design and application of new hierarchically structured porous materials in energy storage and other fields.



2015 ◽  
Vol 1773 ◽  
pp. 41-46
Author(s):  
Sergey M. Karabanov ◽  
Andrey S. Karabanov ◽  
Dmitriy V. Suvorov ◽  
Gennadiy P. Gololobov ◽  
Evgeniy V. Slivkin

ABSTRACTCurrently the improvement of stand-alone PV power systems characteristics, including increase of their service life is the actual direction of ground solar power development. The analysis of stand-alone PV power systems efficiency with the use of ultra capacitors is carried out by the means of mathematical modeling. The obtained data shows that the use of ultra capacitors as additional short-term energy storage devices in stand-alone PV power systems contributes to considerable increase of storage batteries lifetime and the total system operating time.



2016 ◽  
Vol 8 (37) ◽  
pp. 24918-24923 ◽  
Author(s):  
Amir A. Bakhtiary Davijani ◽  
H. Clive Liu ◽  
Kishor Gupta ◽  
Satish Kumar


Green ◽  
2014 ◽  
Vol 4 (1-6) ◽  
Author(s):  
Henrik Olsson ◽  
Martin Sjödin ◽  
Erik Jämstorp Berg ◽  
Maria Strømme ◽  
Leif Nyholm

AbstractThe self-discharge behavior of organic electrodes and symmetric devices for sustainable energy storage, composed of electrodes containing a thin layer of polypyrrole coated onto a high surface area cellulose matrix, has been studied for the first time using different electrode sizes and electrolytes. Experimental data from open circuit measurements of the individual electrode potentials of charged symmetrical two-electrode energy storage devices as a function of time were evaluated based on three different self-discharge models. This evaluation clearly showed that the self-discharge process of the positive electrode is governed by a previously undetected activation-controlled faradaic reaction while the self-discharge of the negative electrode is due to diffusion controlled oxidation involving oxygen dissolved in the electrolyte. Potentiostatic three-electrode measurements and spectroelectrochemical experiments also showed that protons as well as maleimide were released from positively polarized polypyrrole electrodes. These new findings clearly show that the self-discharge of the cells originate from two different types of reactions on the positive and negative electrodes and that the main contribution to the self-discharge of the cells comes from an activation controlled reaction involving the positive electrode. These results provide an improved understanding of polypyrrole based devices and also yield new possibilities for the development of stable conducting polymer system for energy storage applications.



Author(s):  
Seung Uk Son ◽  
Changwan Kang ◽  
Yoon-Joo Ko ◽  
Sang Moon Lee ◽  
Hae Jin Kim ◽  
...  

Conjugated microporous polymers (CMPs) have significant potential as electrode materials for electric energy storage devices, due to their high surface areas, conjugation features, and chemical stability. However, the low conductivity...



Author(s):  
Yanjiao Ma ◽  
Yuan Ma ◽  
Qingsong Wang ◽  
Simon Schweidler ◽  
Miriam Botros ◽  
...  

An overview of high-entropy materials for energy applications, including H2 catalysis and storage, CO2 conversion, O2 catalysis and electrochemical energy storage, is given and the challenges and opportunities within this field are discussed.



Sign in / Sign up

Export Citation Format

Share Document