scholarly journals The Analytic Functional Resonance Analysis to Improve Safety Management

2020 ◽  
Author(s):  
Antonella Petrillo ◽  
Fabio De Felice ◽  
Laura Petrillo
2019 ◽  
Vol 273 ◽  
pp. 02001 ◽  
Author(s):  
Nektarios Karanikas ◽  
Alfred Roelen

In safety science and practice, there have been various safety models, each of them reflecting a particular approach to safety management and accident causality. The large variety of models suggested in literature and applied in practice serve the communication of diverse perspectives towards safety and the need to consider contextual factors, but it does not allow the establishment of a common language within and across organisations and industry sectors. Considering the potential benefits of talking a lingua franca when it comes to safety and inspired by the Standard Model used in particle physics and recent suggestions from relevant studies, we thought of exploring the possibility to introduce a Standard Safety Model (STASAM). As a first step, we focused on four representative safety and accident models widely used, discussed and debated: the Swiss Cheese Model, AcciMap, Functional Resonance Analysis Method (FRAM) and Systems-Theoretic Accident Model and Processes (STAMP). We reviewed literature which compares the particular models, and we listed the strengths and weaknesses of each as a means to set the grounds for the STASAM. The combinations of these models with a focus to host their advantages and avoiding their disadvantages led to a three-level STASAM. The concept STASAM was used in two random incident investigation reports to assess its applicability and visualisation against the original models. The results of the application along with the STASAM concept were reviewed by three safety professionals and three safety researchers. The comments received were in the positive direction and indicated the potential of establishing an inclusive and commonly accepted safety/accident model. The next research phase will be the additional review of the STASAM and its pilot application to a variety of safety events and systems as a means to test its reliability and strengthen its validity.


Safety ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 50
Author(s):  
Hussein Slim ◽  
Sylvie Nadeau

In recent years, the focus in safety management has shifted from failure-based analysis towards a more systemic perspective, redefining a successful or failed performance as a complex and emergent event rather than as a conclusion of singular errors or root causes. This paradigm shift has also necessitated the introduction of innovative tools capable of capturing the complex and dynamic nature of modern sociotechnical systems. In our research, we argued at previous stages for adopting a more systemic and human-centric perspective to evaluate the context of aircraft de-icing operations. The Functional Resonance Analysis Method (FRAM) was applied in the first stage for this purpose. Consequently, fuzzy logic was combined with FRAM in the second stage to provide a quantified representation of performance variability. Fuzzy logic was used as a quantification tool suitable for computing with natural language. Several limitations were found in the data collection and rule generation process for the first prototype. In the third phase, the model was further improved by integrating rough sets as a data-mining tool to generate and reduce the size of the rule base and classify outcomes. In this paper, we reflect on the three stages of the project and discuss in a qualitative manner the challenges and limitations faced in the development and application of the models. A summary of the advantages and disadvantages of the three models as experienced in our case are presented at the end. The objective is to present an outlook for future studies to address methodological limitations in the study of complex sociotechnical systems.


Author(s):  
Antonella Petrillo ◽  
Luigi Ranieri ◽  
Laura Petrillo ◽  
Fabio De Felice

Technological innovation has led to the development of increasingly efficient and complex industrial plants. To manage this complexity, it is necessary to define an integrated vision of the socio-technological system that includes: technological, human and organizational component. Petrochemicals can be considered one of the most complex socio-technical systems that deserve special attention to high risk management, especially during the emergency conditions. Traditional safety management models only consider static systems, while new resilience engineering models evaluate the performance variability developed between different actions. One of the recent development methods is the Functional Resonance Analysis Method (FRAM) that identifies the pairs between the functions. FRAM unfortunately is a qualitative model, this research integrates this model with the Performance Shaping Factors (PSFs) and with the Bayesian approach to identify the performance variability of the system. The analysis aims to develop a system that improves safety analysis. The proposed model is applied in a case study of an emergency in a petrochemical company.


Author(s):  
Lauchlan J. Clarke ◽  
Gregor J. Macfarlane ◽  
Irene Penesis ◽  
Jonathan T. Duffy ◽  
Shinsuke Matsubara ◽  
...  

Risk assessments underpin a maritime operation’s safety management system. When applied to an untested concept a risk assessment can also assist with overcoming resistance to new technology. This paper proposes the functional resonance analysis method (FRAM) as a tool for developing design recommendations and fulfilling the safety management objectives of the ISM Code. The FRAM is applied to benefit the floating harbour transhipper (FHT), a novel concept for the transhipment of bulk commodities. The FHT acts as a large floating warehouse with an aft well dock that provides shelter for a feeder vessel. The FHT’s materials handling equipment transfers bulk cargo from the feeder vessel onto its own stockpile or directly to an export vessel moored alongside, or from its stockpile to the export vessel. Most risk assessment tools focus on identifying and addressing system components that can potentially fail. With the FRAM however, the scope, direction and recommendations are guided by a practical understanding of the variability of work undertaken rather than preconceived notions of potential failure modes. Adopting a method based on maximising resilience rather than minimising the causes of accidents promotes a shift from a blame culture to a safety culture. Applying the FRAM generated a deeper, broader and more transparent understanding of the FHT transfer operation than what would have been achievable using traditional risk assessment tools. This understanding was used to develop recommendations designed to improve the resilience of the FHT operation.


2021 ◽  
pp. 477-492
Author(s):  
Riccardo Patriarca

Modern societies call for a reconsideration of risk and safety, in light of the increasing complexity of human-made systems. Technological artefacts, and the respective role of humans, as well as the organizational contexts in which they operate, dramatically changed in the last decades with an even more severe transformation expected in the future. Rooted in human factors, ergonomics, cognitive engineering, systems thinking and complexity theory, the discipline of resilience engineering proposes innovative approaches for safety challenges imposed by the dynamic, uncertain, and intertwined nature of modern sociotechnical systems. Resilience engineering aims to provide support means for ensuring that systems can sustain required operations under both expected and unexpected conditions. This chapter aims to provide a summary of the scientific field of resilience engineering, as well as a description of two methods common in the field, the resilience analysis grid and the functional resonance analysis method. Following two examples, the chapter proposes a multidisciplinary research agenda for the field.


Sign in / Sign up

Export Citation Format

Share Document