scholarly journals Ultra-High Performance and Low-Cost Architecture of Discrete Wavelet Transforms

2020 ◽  
Author(s):  
Mouhamad Chehaitly ◽  
Mohamed Tabaa ◽  
Fabrice Monteiro ◽  
Safa Saadaoui ◽  
Abbas Dandache

This work targets the challenging issue to produce high throughput and low-cost configurable architecture of Discrete wavelet transforms (DWT). More specifically, it proposes a new hardware architecture of the first and second generation of DWT using a modified multi-resolution tree. This approach is based on serializations and interleaving of data between different stages. The designed architecture is massively parallelized and sharing hardware between low-pass and high-pass filters in the wavelet transformation algorithm. Consequently, to process data in high speed and decrease hardware usage. The different steps of the post/pre-synthesis configurable algorithm are detailed in this paper. A modulization in VHDL at RTL level and implementation of the designed architecture on FPGA technology in a NexysVideo board (Artix 7 FPGA) are done in this work, where the performance, the configurability and the generic of our architecture are highly enhanced. The implementation results indicate that our proposed architectures provide a very high-speed data processing with low needed resources. As an example, with the parameters depth order equal 2, filter order equal 2, order quantization equal 5 and a parallel degree P = 16, we reach a bit rate around 3160 Mega samples per second with low used of logic elements ( ≈ 400) and logic registers ( ≈ 700 ).

2021 ◽  
Vol 11 (11) ◽  
pp. 5051
Author(s):  
Francisco Laport ◽  
Paula M. Castro ◽  
Adriana Dapena ◽  
Francisco J. Vazquez-Araujo ◽  
Oscar Fresnedo

We present a prototype to identify eye states from electroencephalography signals captured from one or two channels. The hardware is based on the integration of low-cost components, while the signal processing algorithms combine discrete wavelet transform and linear discriminant analysis. We consider different parameters: nine different wavelets and two features extraction strategies. A set of experiments performed in real scenarios allows to compare the performance in order to determine a configuration with high accuracy and short response delay.


2021 ◽  
Vol 11 (10) ◽  
pp. 4610
Author(s):  
Simone Berneschi ◽  
Giancarlo C. Righini ◽  
Stefano Pelli

Glasses, in their different forms and compositions, have special properties that are not found in other materials. The combination of transparency and hardness at room temperature, combined with a suitable mechanical strength and excellent chemical durability, makes this material indispensable for many applications in different technological fields (as, for instance, the optical fibres which constitute the physical carrier for high-speed communication networks as well as the transducer for a wide range of high-performance sensors). For its part, ion-exchange from molten salts is a well-established, low-cost technology capable of modifying the chemical-physical properties of glass. The synergy between ion-exchange and glass has always been a happy marriage, from its ancient historical background for the realisation of wonderful artefacts, to the discovery of novel and fascinating solutions for modern technology (e.g., integrated optics). Getting inspiration from some hot topics related to the application context of this technique, the goal of this critical review is to show how ion-exchange in glass, far from being an obsolete process, can still have an important impact in everyday life, both at a merely commercial level as well as at that of frontier research.


Author(s):  
Maya M. Lyasheva ◽  
Stella A. Lyasheva ◽  
Mikhail P. Shleymovich

Sign in / Sign up

Export Citation Format

Share Document