scholarly journals Towards a Glass New World: The Role of Ion-Exchange in Modern Technology

2021 ◽  
Vol 11 (10) ◽  
pp. 4610
Author(s):  
Simone Berneschi ◽  
Giancarlo C. Righini ◽  
Stefano Pelli

Glasses, in their different forms and compositions, have special properties that are not found in other materials. The combination of transparency and hardness at room temperature, combined with a suitable mechanical strength and excellent chemical durability, makes this material indispensable for many applications in different technological fields (as, for instance, the optical fibres which constitute the physical carrier for high-speed communication networks as well as the transducer for a wide range of high-performance sensors). For its part, ion-exchange from molten salts is a well-established, low-cost technology capable of modifying the chemical-physical properties of glass. The synergy between ion-exchange and glass has always been a happy marriage, from its ancient historical background for the realisation of wonderful artefacts, to the discovery of novel and fascinating solutions for modern technology (e.g., integrated optics). Getting inspiration from some hot topics related to the application context of this technique, the goal of this critical review is to show how ion-exchange in glass, far from being an obsolete process, can still have an important impact in everyday life, both at a merely commercial level as well as at that of frontier research.

Author(s):  
Alexandr Shalak

The article focuses on historical experience and the importance of transport communications in controlling the economic space and ensuring security of the state. The historical-and-geopolitical approach was used as the methodological framework of the present research. The purpose of the text is to illustrate with milestone historical examples the role of transport communications in binding the Russian space as well as in securing its mobility. The conducted analysis resulted in several meaningful conclusions. The stretched-out communications and low population density undermine the competitive opportunities of the Russian state. The modern strategy of railway development should be aimed at construction of high-speed rail networks, which would enable economic development and promote innovative technologies. The significance of water communications is attributed to their low cost and the world biggest length of rivers and maritime boundaries. The growth of small aircraft fleet, which practically ceased to exist in the post-Soviet period, should become the strategic priority in air communications development. Small aircraft is able to ensure the labor force mobility and provide the access to social infrastructure in sparcely populated areas of European Russia, Siberia and the Far East. The article emphasizes the sharp decline in rate of highways construction, particularly the ones of regional level. The main reasons for slow progress in construction of transport communications in the modern time are lack of political will as well as absence of sound strategy for their development. Based on comparative analysis and historical experience, the article stresses the role and importance of strategic planning and government investment for development of transport communication networks.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 37
Author(s):  
Mayra K. S. Monteiro ◽  
Djalma R. Da Silva ◽  
Marco A. Quiroz ◽  
Vítor J. P. Vilar ◽  
Carlos A. Martínez-Huitle ◽  
...  

This study aims to investigate the applicability of a hybrid electrochemical sensor composed of cork and graphite (Gr) for detecting caffeine in aqueous solutions. Raw cork (RAC) and regranulated cork (RGC, obtained by thermal treatment of RAC with steam at 380 °C) were tested as modifiers. The results clearly showed that the cork-graphite sensors, GrRAC and GrRGC, exhibited a linear response over a wide range of caffeine concentration (5–1000 µM), with R2 of 0.99 and 0.98, respectively. The limits of detection (LOD), estimated at 2.9 and 6.1 µM for GrRAC and GrRGC, suggest greater sensitivity and reproducibility than the unmodified conventional graphite sensor. The low-cost cork-graphite sensors were successfully applied in the determination of caffeine in soft drinks and pharmaceutical formulations, presenting well-defined current signals when analyzing real samples. When comparing electrochemical determinations and high performance liquid chromatography measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of these sensors to determine caffeine in different samples.


Separations ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 13
Author(s):  
Petra Ranušová ◽  
Ildikó Matušíková ◽  
Peter Nemeček

A solid-phase extraction (SPE) procedure was developed for simultaneous monitoring of sixteen different phenolics of various polarity, quantified by high-performance liquid chromatography (HPLC). The procedure allowed screening the accumulation of intermediates in different metabolic pathways that play a crucial role in plant physiology and/or are beneficial for human health. Metabolites mostly involved in phenylpropanoid, shikimate, and polyketide pathways comprise chlorogenic acid, gentisic acid, vanillic acid, caffeic acid, protocatechuic acid, ferulic acid, rutin, quercetin, epicatechin, gallic acid, sinapic acid, p-coumaric acid, o-coumaric acid, vanillin; two rarely quantified metabolites, 2,5-dimethoxybenzoic acid and 4-methoxycinnamic acid, were included as well. The procedure offered low cost, good overall efficiency, and applicability in laboratories with standard laboratory equipment. SPE recoveries were up to 99.8% at various concentration levels. The method allowed for routine analysis of compounds with a wide range of polarity within a single run, while its applicability was demonstrated for various model plant species (tobacco, wheat, and soybean), as well as different tissue types (shoots and roots).


2021 ◽  
Vol 11 (16) ◽  
pp. 7554
Author(s):  
Isiaka Alimi ◽  
Romil Patel ◽  
Nuno Silva ◽  
Chuanbowen Sun ◽  
Honglin Ji ◽  
...  

This paper reviews recent progress on different high-speed optical short- and medium-reach transmission systems. Furthermore, a comprehensive tutorial on high-performance, low-cost, and advanced optical transceiver (TRx) paradigms is presented. In this context, recent advances in high-performance digital signal processing algorithms and innovative optoelectronic components are extensively discussed. Moreover, based on the growing increase in the dynamic environment and the heterogeneous nature of different applications and services to be supported by the systems, we discuss the reconfigurable and sliceable TRxs that can be employed. The associated technical challenges of various system algorithms are reviewed, and we proffer viable solutions to address them.


2013 ◽  
Author(s):  
◽  
Raksha Padaruth

This paper documents and evaluates the use of ceramics as an aesthetic architectural element in Durban from 1914-2012 with special reference to James Hall (1916-2006), Andrew Walford (b.1942) and Jane du Rand (b.1969). These artists were selected because their work demonstrates a wide range of the use of decorative tiles and mosaics as aesthetic elements in Durban architecture over a period of more than fifty years. Reference is made to the historical use of tiles and mosaics as aesthetic architectural elements in Durban from 1914-1955 in order to provide a context to an investigation and evaluation of the contribution of Hall, Walford and du Rand to the use of tiles and mosaics as an aesthetic architectural element in Durban. The paper begins by highlighting the importance of this study, discusses the role of ceramic architectural adornment and defines terminology for the purpose of this research. In addition an explanation of the research methodology used, research questions and literature review is provided. The study is contextualised through an overview of the historical background of the use of ceramics (tiles and mosaics) as an aesthetic element in architecture. The importance of the use of ceramic elements in relation to architecture, as well as the different techniques and methods of production, are highlighted and related to contemporary practice. The overview provides insight into how the use of ceramic elements in the past has influenced the approach of contemporary practice. My contribution to the use of mosaics as an aesthetic architectural element in Durban and my art practice, in the form of an installation titled passage is discussed and evaluated. The paper concludes by noting that the historical use of tiles and mosaics as aesthetic elements in architecture persists in contemporary art practice. However, the methods of tiled mosaic production and tiled mosaic techniques have been revolutionised extensively. It is evident that, the use of ceramics as an aesthetic element in Durban architecture reflects, both a strong European design influence and a distinctive local identity.


2019 ◽  
Vol 16 (3) ◽  
pp. 117-123
Author(s):  
Tsung-Ching Huang ◽  
Ting Lei ◽  
Leilai Shao ◽  
Sridhar Sivapurapu ◽  
Madhavan Swaminathan ◽  
...  

Abstract High-performance low-cost flexible hybrid electronics (FHE) are desirable for applications such as internet of things and wearable electronics. Carbon nanotube (CNT) thin-film transistor (TFT) is a promising candidate for high-performance FHE because of its high carrier mobility, superior mechanical flexibility, and material compatibility with low-cost printing and solution processes. Flexible sensors and peripheral CNT-TFT circuits, such as decoders, drivers, and sense amplifiers, can be printed and hybrid-integrated with thinned (<50 μm) silicon chips on soft, thin, and flexible substrates for a wide range of applications, from flexible displays to wearable medical devices. Here, we report (1) a process design kit (PDK) to enable FHE design automation for large-scale FHE circuits and (2) solution process-proven intellectual property blocks for TFT circuits design, including Pseudo-Complementary Metal-Oxide-Semiconductor (Pseudo-CMOS) flexible digital logic and analog amplifiers. The FHE-PDK is fully compatible with popular silicon design tools for design and simulation of hybrid-integrated flexible circuits.


Author(s):  
Jifeng Wang ◽  
Qubo Li ◽  
Norbert Mu¨ller

A mechanical and optimal analyses procedure is developed to assess the stresses and deformations of Novel Wound Composite Axial-Impeller under loading conditions particular to centrifuge. This procedure is based on an analytical method and Finite Element Analysis (FEA, commercial software ANSYS) results. A low-cost, light-weight, high-performance, composite turbomachinery impeller from differently designed patterns will be evaluated. Such impellers can economically enable refrigeration plants using water as a refrigerant (R718). To create different complex patterns of impellers, MATLAB is used for creating the geometry of impellers, and CAD software UG is used to build three-dimensional impeller models. Available loading conditions are: radial body force due to high speed rotation about the cylindrical axis and fluid forces on each blade. Two-dimensional plane stress and three-dimensional stress finite element analysis are carried out using ANSYS to validate these analytical mechanical equations. The von Mises stress is investigated, and maximum stress and Tsai-Wu failure criteria are applied for composite material failure, and they generally show good agreement.


MRS Bulletin ◽  
1996 ◽  
Vol 21 (4) ◽  
pp. 38-44 ◽  
Author(s):  
F.K. LeGoues

Recently much interest has been devoted to Si-based heteroepitaxy, and in particular, to the SiGe/Si system. This is mostly for economical reasons: Si-based technology is much more advanced, is widely available, and is cheaper than GaAs-based technology. SiGe opens the door to the exciting (and lucrative) area of Si-based high-performance devices, although optical applications are still limited to GaAs-based technology. Strained SiGe layers form the base of heterojunction bipolar transistors (HBTs), which are currently used in commercial high-speed analogue applications. They promise to be low-cost compared to their GaAs counterparts and give comparable performance in the 2-20-GHz regime. More recently we have started to investigate the use of relaxed SiGe layers, which opens the door to a wider range of application and to the use of SiGe in complementary metal oxide semiconductor (CMOS) devices, which comprise strained Si and SiGe layers. Some recent successes include record-breaking low-temperature electron mobility in modulation-doped layers where the mobility was found to be up to 50 times better than standard Si-based metal-oxide-semiconductor field-effect transistors (MOSFETs). Even more recently, SiGe-basedp-type MOSFETS were built with oscillation frequency of up to 50 GHz, which is a new record, in anyp-type material for the same design rule.


2021 ◽  
Vol 2021 (4) ◽  
pp. 84-98
Author(s):  
Vitalii RYSIN ◽  

Crowdfunding as a tool for alternative financing has emerged relatively recently and is of limited use in Ukraine today. At the same time, it has significant potential, which can contribute to the implementation of a wide range of projects that for various reasons are not of interest to traditional lenders or investors. The aim of the article is to determine the benefits of crowdfunding for its participants, the peculiarities of the implementation of certain types of crowdfunding and identify risks that may be generated by them, as well as develop practical recommendations for crowdfunding campaigns by entrepreneurs and authors of community development projects. The article identifies the benefits of crowdfunding for project authors (low cost of capital, access to information and potential investors) and investors (clarity, low risks, access to new products, the ability to support creative ideas), substantiates the role of crowdfunding platforms in realizing the benefits of crowdfunding. The advantages and disadvantages of using certain types of crowdfunding are described. Recommendations for planning and implementation of the main stages of crowdfunding campaigns - idea development, target audience determination, research, communication, project budgeting, reward system development, campaign schedule development – are developed. The factors of choosing a crowdfunding platform for hosting the project are determined. The possibility of using crowdfunding for collective financing of socio-cultural projects within the public budgets of the united territorial communities is shown. The risks of using crowdfunding for project authors and potential investors are identified. Those risks are primarily related to realistic expectations and proper preparation for the fundraising campaign by project authors, as well as the lack of guarantees for investors in the event of problems or bankruptcy of the crowdfunding platform. The author highlights that the growth of public awareness about the possibilities of implementing social or business initiatives through crowdfunding platforms will contribute to the development of platforms, improvement of technological equipment, and expansion of their range of services.


Author(s):  
Raquel Pinto ◽  
André Cardoso ◽  
Sara Ribeiro ◽  
Carlos Brandão ◽  
João Gaspar ◽  
...  

Microelectromechanical Systems (MEMS) are a fast growing technology for sensor and actuator miniaturization finding more and more commercial opportunities by having an important role in the field of Internet of Things (IoT). On the same note, Fan-out Wafer Level Packaging (FOWLP), namely WLFO technology of NANIUM, which is based on Infineon/ Intel eWLB technology, is also finding further applications, not only due to its high performance, low cost, high flexibility, but also due to its versatility to allow the integration of different types of components in the same small form-factor package. Despite its great potential it is still off limits to the more sensitive components as micro-mechanical devices and some type of sensors, which are vulnerable to temperature and pressure. In the interest of increasing FOWLP versatility and enabling the integration of MEMS, new methods of assembling and processing are continuously searched for. Dielectrics currently used for redistribution layer construction need to be cured at temperatures above 200°C, making it one of the major boundary for low temperature processing. In addition, in order to accomplish a wide range of dielectric thicknesses in the same package it is often necessary to stack very different types of dielectrics with impact on bill of materials complexity and cost. In this work, done in cooperation with the International Iberian Nanotechnology Laboratory (INL), we describe the implementation of commercially available SU-8 photoresist as a structural material in FOWLP, allowing lower processing temperature and reduced internal package stress, thus enabling the integration of components such as MEMS/MOEMS, magneto-resistive devices and micro-batteries. While SU-8 photoresist was first designed for the microelectronics industry, it is currently highly used in the fabrication of microfluidics as well as microelectromechanical systems (MEMS) and BIO-MEMS due to its high biocompatibility and wide range of available thicknesses in the same product family. Its good thermal and chemical resistance and also mechanical and rheological properties, make it suitable to be used as a structural material, and moreover it cures at 150°C, which is key for the applications targeted. Unprecedentedly, SU-8 photoresist is tested in this work as a structural dielectric for the redistribution layers on 300mm fan-out wafers. Main concerns during the evaluation of the new WLFO dielectric focused on processability quality; adhesion to multi-material substrate and metals (copper, aluminium, gold, ¦); between layers of very different thicknesses; and overall reliability. During preliminary runs, processability on 300 mm fan-out wafers was evaluated by testing different coating and soft bake conditions, exposure settings, post-exposure parameters, up to developing setup. The outputs are not only on process conditions and results but also on WLFO design rules. For the first time, a set of conditions has been defined that allows processing SU-8 on WLFO, with thickness values ranging from 1 um to 150 um. The introduction of SU-8 in WLFO is a breakthrough in this fast-growing advanced packaging technology platform as it opens vast opportunities for sensor integration in WLP technology.


Sign in / Sign up

Export Citation Format

Share Document