scholarly journals Supporting Named Entity Recognition and Document Classification for Effective Text Retrieval

2021 ◽  
Author(s):  
Philippe Tamla ◽  
Florian Freund ◽  
Matthias Hemmje

In this research paper, we present a system for named entity recognition and automatic document classification in an innovative knowledge management system for Applied Gaming. The objective of this project is to facilitate the management of machine learning-based named entity recognition models, that can be used for both: extracting different types of named entities and classifying text documents from different sources on the Web. We present real-world use case scenarios and derive features for training and managing NER models with the Stanford NLP machine learning API. Then, the integration of our developed NER system with an expert rule-based system is presented, which allows an automatic classification of text documents into different taxonomy categories available in the knowledge management system. Finally, we present the results of two evaluations. First, a functional evaluation that demonstrates the portability of our NER system using a standard text corpus in the medical area. Second, a qualitative evaluation that was conducted to optimize the overall user interface of our system and enable a suitable integration into the target environment.

Data ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 71
Author(s):  
Gonçalo Carnaz ◽  
Mário Antunes ◽  
Vitor Beires Nogueira

Criminal investigations collect and analyze the facts related to a crime, from which the investigators can deduce evidence to be used in court. It is a multidisciplinary and applied science, which includes interviews, interrogations, evidence collection, preservation of the chain of custody, and other methods and techniques of investigation. These techniques produce both digital and paper documents that have to be carefully analyzed to identify correlations and interactions among suspects, places, license plates, and other entities that are mentioned in the investigation. The computerized processing of these documents is a helping hand to the criminal investigation, as it allows the automatic identification of entities and their relations, being some of which difficult to identify manually. There exists a wide set of dedicated tools, but they have a major limitation: they are unable to process criminal reports in the Portuguese language, as an annotated corpus for that purpose does not exist. This paper presents an annotated corpus, composed of a collection of anonymized crime-related documents, which were extracted from official and open sources. The dataset was produced as the result of an exploratory initiative to collect crime-related data from websites and conditioned-access police reports. The dataset was evaluated and a mean precision of 0.808, recall of 0.722, and F1-score of 0.733 were obtained with the classification of the annotated named-entities present in the crime-related documents. This corpus can be employed to benchmark Machine Learning (ML) and Natural Language Processing (NLP) methods and tools to detect and correlate entities in the documents. Some examples are sentence detection, named-entity recognition, and identification of terms related to the criminal domain.


2019 ◽  
pp. 1-8 ◽  
Author(s):  
Tomasz Oliwa ◽  
Steven B. Maron ◽  
Leah M. Chase ◽  
Samantha Lomnicki ◽  
Daniel V.T. Catenacci ◽  
...  

PURPOSE Robust institutional tumor banks depend on continuous sample curation or else subsequent biopsy or resection specimens are overlooked after initial enrollment. Curation automation is hindered by semistructured free-text clinical pathology notes, which complicate data abstraction. Our motivation is to develop a natural language processing method that dynamically identifies existing pathology specimen elements necessary for locating specimens for future use in a manner that can be re-implemented by other institutions. PATIENTS AND METHODS Pathology reports from patients with gastroesophageal cancer enrolled in The University of Chicago GI oncology tumor bank were used to train and validate a novel composite natural language processing-based pipeline with a supervised machine learning classification step to separate notes into internal (primary review) and external (consultation) reports; a named-entity recognition step to obtain label (accession number), location, date, and sublabels (block identifiers); and a results proofreading step. RESULTS We analyzed 188 pathology reports, including 82 internal reports and 106 external consult reports, and successfully extracted named entities grouped as sample information (label, date, location). Our approach identified up to 24 additional unique samples in external consult notes that could have been overlooked. Our classification model obtained 100% accuracy on the basis of 10-fold cross-validation. Precision, recall, and F1 for class-specific named-entity recognition models show strong performance. CONCLUSION Through a combination of natural language processing and machine learning, we devised a re-implementable and automated approach that can accurately extract specimen attributes from semistructured pathology notes to dynamically populate a tumor registry.


2021 ◽  
Vol 75 (3) ◽  
pp. 94-99
Author(s):  
A.M. Yelenov ◽  
◽  
A.B. Jaxylykova ◽  

This research focuses on a comparative study of the Named Entity Recognition task for scientific article texts. Natural language processing could be considered as one of the cornerstones in the machine learning area which devotes its attention to the problems connected with the understanding of different natural languages and linguistic analysis. It was already shown that current deep learning techniques have a good performance and accuracy in such areas as image recognition, pattern recognition, computer vision, that could mean that such technology probably would be successful in the neuro-linguistic programming area too and lead to a dramatic increase on the research interest on this topic. For a very long time, quite trivial algorithms have been used in this area, such as support vector machines or various types of regression, basic encoding on text data was also used, which did not provide high results. The following dataset was used to process the experiment models: Dataset Scientific Entity Relation Core. The algorithms used were Long short-term memory, Random Forest Classifier with Conditional Random Fields, and Named-entity recognition with Bidirectional Encoder Representations from Transformers. In the findings, the metrics scores of all models were compared to each other to make a comparison. This research is devoted to the processing of scientific articles, concerning the machine learning area, because the subject is not investigated on enough properly level.The consideration of this task can help machines to understand natural languages better, so that they can solve other neuro-linguistic programming tasks better, enhancing scores in common sense.


Author(s):  
Georgios Petasis ◽  
Frantz Vichot ◽  
Francis Wolinski ◽  
Georgios Paliouras ◽  
Vangelis Karkaletsis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document