scholarly journals A Note on Heat Transport with Aspect of Magnetic Dipole and Higher Order Chemical Process for Steady Micropolar Fluid

2020 ◽  
Author(s):  
Assad Ayub ◽  
Hafiz A. Wahab ◽  
Zulqurnain Sabir ◽  
Adnène Arbi

Heat transfer through non-uniform heat source/sink is the most significant aspect in view of many physical problems. Heat sink/source with heat transfer help to change the energy distribution in fluids, which consequently disturbs the particle deposition rate like as nuclear reactors, semiconductors and electronic devices. Further, also, the vital role of heat transfer is to enhance the thermal conductivity of micro sized solid particles in fluid. This study scrutinizes the heat transport of steady micropolar fluid via non-uniform heat sink/ source and mass transfer is scrutinized through higher order chemical reaction over a stretching surface with variable heat flux. Moreover, the velocity of micropolar fluid is studied by considering aspects of magnetic dipole and Newtonian heating; velocity slip conditions are also examined. The numerical results have been performed by using the well-known numerical shooting technique and comparison is performed with the Matlab built-in solver bvp4c. Geometrically explanation reveals the properties of numerous parameters that are the system parts. The observed outcomes show that the local skin-friction coefficient and Sherwood number values goes up with the increase of chemical reaction rate parameters and Schmidt numbers. Chemical reaction based parameters boosts up the rate of heat as well as mass transfer. The stress of wall couple increased by increasing the Schmidt and chemical parameters. Moreover, the plots of dimensionless parameters have been drawn, as well as some parameter results are tabulated.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Khilap Singh ◽  
Manoj Kumar

The effects of chemical reaction on heat and mass transfer flow of a micropolar fluid in a permeable channel with heat generation and thermal radiation is studied. The Rosseland approximations are used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been transformed into ordinary differential equation by using the similarity variables. The relevant nonlinear equations have been solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. The physical significance of interesting parameters on the flow and heat transfer characteristics as well as the local skin friction coefficient, wall couple stress, and the heat transfer rate are thoroughly examined.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 93
Author(s):  
Kottakkaran Sooppy Nisar ◽  
Aftab Ahmed Faridi ◽  
Sohail Ahmad ◽  
Nargis Khan ◽  
Kashif Ali ◽  
...  

The mass and heat transfer magnetohydrodynamic (MHD) flows have a substantial use in heat exchangers, electromagnetic casting, X-rays, the cooling of nuclear reactors, mass transportation, magnetic drug treatment, energy systems, fiber coating, etc. The present work numerically explores the mass and heat transportation flow of MHD micropolar fluid with the consideration of a chemical reaction. The flow is taken between the walls of a permeable channel. The quasi-linearization technique is utilized to solve the complex dynamical coupled and nonlinear differential equations. The consequences of the preeminent parameters are portrayed via graphs and tables. A tabular and graphical comparison evidently reveals a correlation of our results with the existing ones. A strong deceleration is found in the concentration due to the effect of a chemical reaction. Furthermore, the impact of the magnetic field force is to devaluate the mass and heat transfer rates not only at the lower but at the upper channel walls, likewise.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Odelu Ojjela ◽  
N. Naresh Kumar

This paper presents an incompressible two-dimensional heat and mass transfer of an electrically conducting micropolar fluid flow in a porous medium between two parallel plates with chemical reaction, Hall and ion slip effects. Let there be periodic injection or suction at the lower and upper plates and the nonuniform temperature and concentration at the plates are varying periodically with time. The flow field equations are reduced to nonlinear ordinary differential equations using similarity transformations and then solved numerically by quasilinearization technique. The profiles of velocity components, microrotation, temperature distribution and concentration are studied for different values of fluid and geometric parameters such as Hartmann number, Hall and ion slip parameters, inverse Darcy parameter, Prandtl number, Schmidt number, and chemical reaction rate and shown in the form of graphs.


1966 ◽  
Vol 24 (2) ◽  
pp. 339-366 ◽  
Author(s):  
J. D. Goddard ◽  
Andreas Acrivos

This is the second of two articles by the authors dealing with asymptotic expansions for forced-convection heat or mass transfer to laminar flows. It is shown here how the method of the first paper (Acrivos & Goddard 1965), which was used to derive a higher-order term in the large Péclet number expansion for heat or mass transfer to small Reynolds number flows, can yield equally well higher-order terms in both the large and the small Prandtl number expansions for heat transfer to laminar boundary-layer flows. By means of this method an exact expression for the first-order correction to Lighthill's (1950) asymptotic formula for heat transfer at large Prandtl numbers, as well as an additional higher-order term for the small Prandtl number expansion of Morgan, Pipkin & Warner (1958), are derived. The results thus obtained are applicable to systems with non-isothermal surfaces and arbitrary planar or axisymmetric flow geometries. For the latter geometries a derivation is given of a higher-order term in the Péclet number expansion which arises from the curvature of the thermal layer for small Prandtl numbers. Finally, some applications of the results to ‘similarity’ flows are also presented.


Sign in / Sign up

Export Citation Format

Share Document