scholarly journals Treatment of Textile Dyeing Waste Water Using TiO2/Zn Electrode by Spray Pyrolysis in Electrocoagulation Process

2021 ◽  
Author(s):  
Parameswari Kalivel

An alternative form of treatment for the remediation of textile waste water, electrocoagulation (EC) methods are used. This work deals mainly with the treatment of waste water for textile dyeing preceded by the use of wastewater. The goal of the proposed study is to evaluate the efficiency of the electrocoagulation process using TiO2/Zn electrodes using TiCl3 via spray pyrolysis. The surface morphology of the electrode was studied by SEM, XRD and EDS analysis. The efficiency of electrocoagulation treatment process to treat synthetic waste water containing Coralene Navy RDRLSR, Coralene Red 3G, Rubru RD GLFI dye was studied. The effect of parameters such as current density, influence of effluent pH, supporting electrolyte NaCl concentration, and EC time on dye removal efficiency were investigated. The result indicates that this process is very efficient and was able to achieve color removal (99.5%) at pH 8.5 and 0.15 A in 10 minutes.

2019 ◽  
Vol 31 (8) ◽  
pp. 1835-1841
Author(s):  
Parameswari Kalivel ◽  
Jegathambal Palanichamy ◽  
Mano Magdalene Rubella

Electrocoagulation methods are being used for the alternative treatment process for the remediation of textile waste water. This work primarily deals with the treatment of textile dyeing waste water followed by the utilization of waste material. The purpose of the proposed study is to evaluate the potential of electrocoagulatison process using Ti2O3/Zn electrode prepared by spray pyrolysis using TiCl3 and compared the performance with Zn electrodes. The surface morphology, structural analysis and percentage composition of the elements of the Ti2O3/Zn electrode was studied by SEM, XRD and EDS analysis. The efficiency of electrocoagulation treatment process to treat synthetic waste water containing Coralene Navy RDRLSR, Coralene Red 3G, Rubru RD GLFI dye was studied for the effect of operational parameters. The result indicates that this process was able to achieve colour removal (97.2 %) at pH 8.5, with 34.42 % less energy consumption with Ti2O3/Zn compared with zinc electrodes.


2011 ◽  
Vol 23 (2) ◽  
pp. 243-251 ◽  
Author(s):  
Ola M. Gomaa ◽  
Hussein Abd El Kareem ◽  
Reham Fatahy

2018 ◽  
Vol 103 ◽  
pp. 323-328
Author(s):  
Héctor Salas ◽  
Víctor Lopez-Grimau ◽  
Mercedes Vilaseca ◽  
Martí Crespi ◽  
Carmen Gutierrez-Bouzán

2012 ◽  
Vol 16 (2) ◽  
pp. 117-123 ◽  
Author(s):  
N.F. Ali ◽  
R.S.R. El-Mohamedy

Sign in / Sign up

Export Citation Format

Share Document