scholarly journals Wavelet Transform for Signal Processing in Internet-of-Things (IoT)

2021 ◽  
Author(s):  
Indrakshi Dey ◽  
Shama Siddiqui

The primary contribution of this chapter is to provide an overview of different denoising methods used for signal processing in IoT networks from the perspectives of physical layer in the network. The chapter starts with the introduction to different kinds of noise that can be encountered in any kind of wireless communication networks, different kinds of wavelet transform and wavelet packet transform methods that can be used for denoising sensor signals in IoT networks and the different processing steps that are needed to be followed to accomplish wavelet packet transform for the sensor signals. Finally, a universal framework based on energy correlation analysis has been presented for denoising sensor signals in IoT networks, and such a framework can achieve considerable improvement in denoising performance reducing the effective noise correlation coefficient to 0.00001 or lower. Moreover, this method is found to be equally effective for Gaussian or impact noise or both.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Chao Tan ◽  
Yanping Wang ◽  
Xin Zhou ◽  
Zhongbin Wang ◽  
Lin Zhang ◽  
...  

In order to solve the problem of industrial sensor signal denoising, an integrated denoising method for sensor mixed noises based on wavelet packet transform and energy-correlation analysis is proposed. The architecture of proposed method is designed and the key technologies, such as wavelet packet transformation, energy-correlation analysis, and processing method of wavelet packet coefficients based on energy-correlation analysis, are presented. Finally, a simulation example for a specific signal and an application of shearer cutting current signal, which mainly contain white Gaussian noise and impact noise, are carried out, and the simulation and application results show that the proposed method is effective and is outperforming others.


2014 ◽  
Vol 986-987 ◽  
pp. 2056-2059
Author(s):  
Zhe Yuan Wang ◽  
Li Jiang

This paper discusses the application of wavelet transform in signal compression and signal recombination detailedly. This paper briefly introduces the principle of wavelet transform in signal compression and signal recombination, this paper also introduces the wavelet MATLAB simulation experiments. This paper researches the differences the wavelet transform and wavelet packet transform in signal compression, this paper also briefly discusses the influence factors of signal compression.


2019 ◽  
Vol 24 (3) ◽  
pp. 418-425
Author(s):  
Cristina Cristina Castejon ◽  
Marıa Jesus Gomez ◽  
Juan Carlos Garcia-Prada ◽  
Eduardo Corral

Maintenance is critical to avoid catastrophic failures in rotating machinery, and the detection of cracks plays a critical role because they can originate failures with costly processes of reparation, especially in shafts. Vibration signals are widely used in machine monitoring and fault diagnostics. The most critical issue in machine monitoring is the suitable selection of the vibration parameters that represent the condition of the machine. Discrete Wavelet Transform, and one of its recursive forms, called Wavelet Packet Transform, provide a high potential for pattern extraction. Several factors must be selected and taken into account in the Wavelet Transform application such as the level of decomposition, the suitable mother wavelet, and the level basis or features. In this work, the dynamic response of a shaft with different levels of crack is studied. The evolution of energy of the vibration signals obtained from the rotating shaft and the frequencies where maximum increments of energy appear with the crack are analyzed. The results allow the conclusion that changes in energies computed by means of the Wavelet Packet Transform can be successfully used for crack detection.


2015 ◽  
Author(s):  
Jinjiang Wang ◽  
Robert X. Gao ◽  
Xinyao Tang ◽  
Zhaoyan Fan ◽  
Peng Wang

Data communication through metallic structures is generally encountered in manufacturing equipment and process monitoring and control. This paper presents a signal processing technique for enhancing the signal-to-noise ratio and high-bit data transmission rate in ultrasound-based wireless data transmission through metallic structures. A multi-carrier coded-ultrasonic wave modulation scheme is firstly investigated to achieve high-bit data rate communication while reducing inter-symbol inference and data loss, due to the inherent signal attenuation, wave diffraction and reflection in metallic structures. To improve the signal-to-noise ratio, dual-tree wavelet packet transform (DT-WPT) has been investigated to separate multi-carrier signals under noise contamination, given its properties of shift-invariance and flexible time frequency partitioning. A new envelope extraction and threshold setting strategy for selected wavelet coefficients is then introduced to retrieve the coded digital information. Experimental studies are performed to evaluate the effectiveness of the developed signal processing method for manufacturing.


2018 ◽  
Vol 7 (3.29) ◽  
pp. 1
Author(s):  
T Ananda Babu ◽  
Dr P. Rajesh Kumar

The prediction of term labor by analyzing the uterine magnetomyographic signals attempted in this research. The existing works did not focus on the classification of the signals. Publicly available MIT-BIH database records were divided into term-labor and term-nonlabor groups. This research presents two methods for feature extraction, discrete wavelet transform and wavelet packet transform. Energy, standard deviation, variance, entropy and waveform length of transform coefficients used in the first method. The normalized logarithmic energy of wavelet coefficients from each packet of the total wavelet packet tree used as the feature space for the second method. The labor assessment done through the classification of the features by using five different classifiers for different mother wavelet families. Discrete wavelet transform features extracted using coif5 wavelet with random subspace classification gives the accuracy, precision and FPrates of 93.9286%, 94.2014% and 5.7986% respectively. Using sym8 wavelet for wavelet packet transform features classified with SVM classifier performed well with 95.8763% accuracy, 95.9719% precision and 4.0281% FPrate. The results obtained from the research will be helpful in term labor assessment and understanding the parturition process.  


2012 ◽  
Vol 157-158 ◽  
pp. 1008-1011
Author(s):  
Hui Huang Zhao ◽  
Yao Nan Wang ◽  
Ya Qi Sun ◽  
Jian Zhen Chen

Human face three-dimensional (3D) reconstruction is a challenging problem. In this paper, we propose a human face fast- 3D- reconstruction method based on image processing with a single image. Shape from shading (SFS) is chosen to reconstruct the human face. First, SFS theory is introduced. It has the advantage of fast 3D reconstruction and only need a single image. Secondly, because the noise will affect the 3D reconstruction result greatly, wavelet transform and wavelet packet transform are introduced and used in image denoising respectively. The experiment has shown that the method based on wavelet transform produces the best denoising result than wavelet packet transform. At last, a human face 3D reconstruction algorithm based on a single image is proposed. The experimental results show that a human face 3D model can be reconstructed in fast by proposed algorithm.


2021 ◽  
Author(s):  
Indrakshi Dey

<div>Denoising of signals in an Internet-of-Things (IoT) network is critically challenging owing to the diverse nature of the nodes generating them, environments through which they travel, characteristics of noise plaguing the signals and the applications they cater to. In order to address the abovementioned challenges, we conceptualize a generalized framework combining wavelet packet transform (WPT) and energy correlation analysis. WPT decomposes both the low-frequency and high-frequency components of the received signals in different time scales and wavelet spaces. Noise components are identified, removed through filtering and the signal components are predicted back after filtering using inverse wavelet packet transform (IWPT). Next energy of the reconstructed signal components are compared with that of the original transmitted signal to modify the characteristics of the decomposed signal components. Using the modified details, the signal components are reconstructed back again and the noise components are filtered out. This process is repeated until noise is completely removed. Initial results suggest that, our proposed framework offers improvement in error probability performance of a medium-scale IoT network over traditional discrete wavelet transform (DWT) and WPT based techniques by around 3 dB and 7 dB respectively.</div>


Sign in / Sign up

Export Citation Format

Share Document