scholarly journals Bacteriocins of Lactic Acid Bacteria as Potent Antimicrobial Peptides against Food Pathogens

Biomimetics ◽  
2021 ◽  
Author(s):  
Parveen Kaur Sidhu ◽  
Kiran Nehra

An ever-growing demand for food products with minimal chemical additives has generated a necessity for exploring new alternatives for food preservation. In this context, more recently, bacteriocins, the peptides having antimicrobial property, synthesized ribosomally by numerous bacteria have been attracting a lot of attention. They are known to possess the potential to restrict the growth of microorganisms causing food spoilage without causing any harm to the bacteria themselves owing to the presence of self-defensive proteins. In particular, the bacteriocins of lactic acid bacteria have been considered harmless and safe for consumption and are indicated to evade the development of unwanted bacteria. Use of bacteriocins as biopreservatives has been studied in various food industries, and they have been established to elevate the shelf life of minimally processed food items by exerting killing mechanism. They restrict the growth of undesirable bacteria by breaking the target cell membrane and finally resulting into pore formation. The current article provides an insight on bacteriocins of lactic acid bacteria, their biosynthesis, mechanism of action, and promising applications of these antimicrobial peptides in the food sector.


2021 ◽  
Author(s):  
S. Keerthini ◽  
R. Kapilan ◽  
S. Vasantharuba

Abstract BackgroundProbiotic, Lactic Acid Bacteria (LAB) are consumed by human through the traditional food products for several decades due to their beneficial health effects. LAB is Gram positive, non motile bacteria that produce antimicrobial peptides for their defense mechanism. Among the antimicrobial peptides, Bacteriocins are widely investigated because of their possible utilization in food sector especially food security actions, where bacteriocin kills or inhibits the growth of other bacteria. Usage of metabolic products of LAB and LAB are generally recognized as safe. Therefore, this study was aimed to isolate LAB species that produce bacteriocin showing wide spectrum antibacterial activity.Results Lactic acid bacteria were isolated from yoghurt, curd, dosa batter, idli batter and soaked and ground rice batter using (De Man, Rogosa and Sharpe agar) MRS agar and incubated at room temperature (30±2ºC) for 24-72 h aerobically and anaerobically. When agar well diffusion method was employed to detect the antibacterial activity of the twenty five isolates against food spoilage organisms (Enterococcus faecalis, Staphylococcus aureus, Pseudomonas aeruginosa, E.coli, Klebsiella pneumoniae, Serratia marcescens, Salmonella sp., Proteus sp., Micrococcus sp., and Bacillus sp.,). Three bacterial species showing broad spectrum of antibacterial activity, were identified and characterized by biochemical and molecular methods. The wide spectrum antibacterial bacterial species were identified as Lactobacillus reuteri AF182723 isolated from curd, Lactobacillus rhamnosus AY299488 isolated from rice batter and Lactobacillus acidophilus AF182726 isolated from yoghurt. Among all the isolates, Lactobacillus reuteri AF182723 showed significant wide spectrum antibacterial activity against diverse Gram positive and Gram negative bacterial species. Conclusion The production of bacteriocin from Lactobacillus reuteri AF182723 and incorporating it in the food would inhibit the food spoilage organisms. Usage of this bacteriocin at appropriate concentration in food needs to be studied further.



Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 963
Author(s):  
Jon Kepa Izaguirre ◽  
Leire Barañano ◽  
Sonia Castañón ◽  
Itziar Alkorta ◽  
Luis M. Quirós ◽  
...  

Soybeans and soy-based products contain isoflavones which can be used for nutraceutical and medical applications. In soybeans and in unfermented soy foods, isoflavones are normally present as glycosides. Isoflavone glycosides can be enzymatically converted to isoflavone aglycones, thus releasing the sugar molecule. The effective absorption of isoflavones in humans requires the bioconversion of isoflavone glycosides to isoflavone aglycones through the activity of the enzyme β-glucosidase. The objective was to assess the capacity of 42 bacterial strains (belonging to Lactobacillus, Streptococcus and Enterococcus) to produce β-glucosidase activity. The strain that showed the highest β-glucosidase activity (Lactobacillus plantarum 128/2) was then used for the optimization of the bioconversion of genistin and daidzin present in commercial soymilk to their aglycone forms genistein and daidzein. The contribution of process parameters (temperature, inoculum size, time) to the efficiency of such bioactivation was tested. Lactobacillus plantarum 128/2 was able to completely bioactivate soymilk isoflavones under the following conditions: 25 °C temperature, 2% inoculum size and 48 h process time. These results confirm the suitability of lactic acid bacteria for the bioactivation of isoflavones present in soymilk and provide an interesting candidate (L. plantarum 182/2) for food industries to perform this transformation.



2018 ◽  
Vol 6 (2) ◽  
pp. 500-508
Author(s):  
Julie Ann A. Arcales ◽  
Garner Algo L.Alolod

Isolation and characterization of bacteria in food products are important to determine and distinguish the beneficial or harmful effects of microbiota in certain samples. Lactic acid bacteria in food products had long been associated to good factors as food preservatives and with added fermentation metabolites. This study isolated and characterized lactic acid bacteria from burong bangus. The culture and purification process of bacteria isolation resulted to 4 strains of lactic acid bacteria namely Enterococcus faecalis, Tetragenococcus muriaticus, Lactobacillus delbrueckii subp. delbrueckii and Carnobacterium divergens. High enzymatic activity were observed with E. faecalis particularly on lipase and protease assay. While C. divergens have no enzymatic activity against lipase, protease, amylase and cellulase. The antimicrobial property of L. delbrueckii is only susceptible to amoxicillin unlike the other three bacteria isolates. No antagonistic activity were observed with the four bacterial strains against Bacillus subtilis, Staphylococcus aureus and Escherichia coli. The result of this study showed promising benefits to the industry especially in developing countries like the Philippines because population are not yet so aware of this organisms and the benefits that can be derived through their consumption.



Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1432
Author(s):  
Horst Auerbach ◽  
Peter Theobald

Whole-crop rye harvested before maturity represents a valuable forage for silage production. Due to the scarcity of data on fermentation characteristics and aerobic stability (ASTA) and the lack of information on mycotoxin formation during aeration of early-cut rye (ECR) silage after silo opening, we evaluated the effects of different additive types and compositions. Wilted forage was treated with various biological and chemical additives, ensiled in 1.5-L glass jars and stored for 64 days. Fermentation pattern, yeast and mould counts and ASTA were determined at silo opening. In total 34 mycotoxins were analysed in wilted forage and in silage before and after 240 h of air exposure. Chemical additives caused the lowest dry matter (DM) losses during fermentation accompanied with the lowest ethanol production and the highest water-soluble carbohydrate concentration. Aerobic deterioration, which started within two days after silo opening in silage left untreated and inoculated with homofermentative lactic acid bacteria, was prevented by the combined use of hetero- and homofermentative lactic acid bacteria and the chemical additive containing sodium nitrite, hexamethylene tetramine and potassium sorbate. Moreover, these two additives largely restricted the formation of the mycotoxin roquefortine C to < 0.05 mg kg−1 DM after aeration, whereas untreated silage contained 85.2 mg kg−1 DM.



Biopolymers ◽  
2000 ◽  
Vol 55 (1) ◽  
pp. 50-61 ◽  
Author(s):  
Ingolf F. Nes ◽  
Helge Holo


2012 ◽  
Vol 5 ◽  
pp. BCI.S10529 ◽  
Author(s):  
Shinsuke Kuwaki ◽  
Nobuyoshi Nakajima ◽  
Hidehiko Tanaka ◽  
Kohji Ishihara

A plant-based paste fermented by lactic acid bacteria and yeast (fermented paste) was made from various plant materials. The paste was made of fermented food by applying traditional food-preservation techniques, that is, fermentation and sugaring. The fermented paste contained major nutrients (carbohydrates, proteins, and lipids), 18 kinds of amino acids, and vitamins (vitamin A, B1 B2, B6, B12, E, K, niacin, biotin, pantothenic acid, and folic acid). It contained five kinds of organic acids, and a large amount of dietary fiber and plant phytochemicals. Sucrose from brown sugar, used as a material, was completely resolved into glucose and fructose. Some physiological functions of the fermented paste were examined in vitro. It was demonstrated that the paste possessed antioxidant, antihypertensive, antibacterial, anti-inflammatory, anti-allergy and anti-tyrosinase activities in vitro. It was thought that the fermented paste would be a helpful functional food with various nutrients to help prevent lifestyle diseases.



Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1582
Author(s):  
Ruby Stella Lucumi-Banguero ◽  
Cristina Ramírez-Toro ◽  
German A. Bolívar

The biopreservation of meat products is of great interest due to the demand for products with low or minimal chemical additives. Lactic acid bacteria (LAB) have been used as protective cultures for many centuries. The objective of this work was to characterize 10 native LAB isolated from meat masses with biopreservative potential for meat products. The isolates were subjected to viability tests with different concentrations of NaCl, nitrite, and nitrate salts, pHs, and temperature conditions. Antibiotic resistance and type of lactic acid isomer were tested. In addition, the isolates were tested against seven pathogens, and inhibitory substances were identified by diffusion in agar wells. Finally, two isolates, Lb. plantarum (SB17) and Lb. sakei (SB3) were tested as protective cultures of chorizo in a model. As a result, the viability at different concentrations of NaCl and nitrate and nitrate salts were obtained. pH and temperature exerted a negative effect on the growth of some of the isolates. Pathogens were inhibited mainly by the presence of organic acids; P. aurius was the most susceptible, and S. typhimurium and S. marcescens were the most resistant. The strains SB17 and SB3 had similar effects on chorizo, and time exerted a deleterious effect on microbiological quality and pH. The results indicated that the 10 isolates show promising characteristics for the preservation of cooked meat products, with the strain Lb. plantarum (SB17) being the most promising.



2021 ◽  
Vol 854 (1) ◽  
pp. 012025
Author(s):  
A Djukic-Vuković ◽  
D Mladenovic ◽  
B Lakicevic ◽  
L Mojovic

Abstract Lactic acid bacteria (LAB) have acted in food fermentations through the ages due to their safety and resilience to specific harsh conditions of high salinity or low pH present in food and gut where they live. Their interaction with human technological development started in food but goes beyond, as some LAB contribute to the health of humans and animals as probiotics. The stress tolerance of LAB also makes them excellent, robust industrial microorganisms for production of lactic acid and other chemicals. The lactic acid market has had a high growth rate in the last decade mainly due to expansion of poly-lactide production. Poly-lactides are biocompatible, thermostable and biodegradable polymers of lactic acid, suitable for use in food packaging or in medicine, as scaffolds, implants or delivery systems. The ability of LAB to grow on complex waste substrates but efficiently produce selected isomers of lactic acid has positioned them at the core of bio-based packaging production, and this field is expected to grow in the future. Therefore, LAB are important for food - for preservation, flavour and packaging, but also beyond food – as probiotics, paraprobiotics and postbiotics. Recent trends in these fields of LAB application are analysed in this work.



Sign in / Sign up

Export Citation Format

Share Document