scholarly journals Chitosan-Based Oral Drug Delivery System for Peptide, Protein and Vaccine Delivery

2021 ◽  
Author(s):  
Siti Zuhairah Zainuddin ◽  
Khuriah Abdul Hamid

Oral delivery is the most common and preferred route of drug administration due to its convenience and ease of administration. However, various factors such as poor solubility, low dissolution rate, stability, and bioavailability of many drugs remain an ongoing challenge in achieving desired therapeutic levels. The delivery of drugs must overcome various obstacles, including the acidic gastric environment, the presence of the intestinal efflux and influx transporters and the continuous secretion of mucus that protects the gastrointestinal tract (GIT). As the number and chemical diversity of drugs has increased, various strategies are required to develop orally active therapeutics. One of the approaches is to use chitosan as a carrier for oral delivery of peptides, proteins as well as vaccines delivery. Chitosan, a non-toxic N-deacetylated derivative of chitin appears to be under intensive progress during the last years towards the development of safe and efficient chitosan-based drug delivery systems. This polymer has been recognised as a versatile biomaterial because of its biodegradability, biocompatibility, and non-toxicity. This chapter reviews the physicochemical characteristics of chitosan and the strategies that have been successfully applied to improve oral proteins, peptides, and vaccines bioavailability, primarily through various formulation strategies.


2020 ◽  
Vol 8 (13) ◽  
pp. 2636-2649
Author(s):  
Yuli Bai ◽  
Rui Zhou ◽  
Lei Wu ◽  
Yaxian Zheng ◽  
Xi Liu ◽  
...  

Endowing the NPs with specific surface features of dendritic oligopeptides holds great potential for the oral delivery of peptide/protein drugs.



Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1194
Author(s):  
Aristote B. Buya ◽  
Ana Beloqui ◽  
Patrick B. Memvanga ◽  
Véronique Préat

Approximately one third of newly discovered drug molecules show insufficient water solubility and therefore low oral bio-availability. Self-nano-emulsifying drug-delivery systems (SNEDDSs) are one of the emerging strategies developed to tackle the issues associated with their oral delivery. SNEDDSs are composed of an oil phase, surfactant, and cosurfactant or cosolvent. SNEDDSs characteristics, their ability to dissolve a drug, and in vivo considerations are determinant factors in the choice of SNEDDSs excipients. A SNEDDS formulation can be optimized through phase diagram approach or statistical design of experiments. The characterization of SNEDDSs includes multiple orthogonal methods required to fully control SNEDDS manufacture, stability, and biological fate. Encapsulating a drug in SNEDDSs can lead to increased solubilization, stability in the gastro-intestinal tract, and absorption, resulting in enhanced bio-availability. The transformation of liquid SNEDDSs into solid dosage forms has been shown to increase the stability and patient compliance. Supersaturated, mucus-permeating, and targeted SNEDDSs can be developed to increase efficacy and patient compliance. Self-emulsification approach has been successful in oral drug delivery. The present review gives an insight of SNEDDSs for the oral administration of both lipophilic and hydrophilic compounds from the experimental bench to marketed products.



RSC Advances ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. 5372-5380 ◽  
Author(s):  
Soledad Stagnoli ◽  
M. Alejandra Luna ◽  
Cristian C. Villa ◽  
Fabrisio Alustiza ◽  
Ana Niebylski ◽  
...  

We evaluatein vitroandin vivotoxicity and stability in an acidic environment of new vesicles formed by the catanionic surfactant AOT-BHD in order to investigate their potential application as an oral drug delivery system.



Nanoscale ◽  
2019 ◽  
Vol 11 (34) ◽  
pp. 15958-15970 ◽  
Author(s):  
Qingling Song ◽  
Jiajia Jia ◽  
Xiuxiu Niu ◽  
Cuixia Zheng ◽  
Hongjuan Zhao ◽  
...  

Oral drug delivery systems (ODDSs) have attracted considerable attention in relation to orthotopic colon cancer therapy due to certain popular advantages.



Author(s):  
Kathpalia Harsha ◽  
Das Sukanya

Ion Exchange Resins (IER) are insoluble polymers having styrene divinylbenzene copolymer backbone that contain acidic or basic functional groups and have the ability to exchange counter ions with the surrounding aqueous solutions. From the past many years they have been widely used for purification and softening of water and in chromatographic columns, however recently their use in pharmaceutical industry has gained considerable importance. Due to the physical stability and inert nature of the resins, they can be used as a versatile vehicle to design several modified release dosage forms The ionizable drug is complexed with the resin owing to the property of ion exchange. This resin complex dissociatesin vivo to release the drug. Based on the dissociation strength of the drug from the drug resin complex, various release patterns can be achieved. Many formulation glitches can be circumvented using ion exchange resins such as bitter taste and deliquescence. These resins also aid in enhancing disintegrationand stability of formulation. This review focuses on different types of ion exchange resins, their preparation methods, chemistry, properties, incompatibilities and their application in various oral drug delivery systems as well as highlighting their use as therapeutic agents.



2012 ◽  
Vol 9 (2) ◽  
pp. 213-217 ◽  
Author(s):  
Mehdi Rahimi ◽  
Hamid Mobedi ◽  
Aliasghar Behnamghader ◽  
Alireza Nateghi Baygi ◽  
Houri Mivehchi ◽  
...  






2019 ◽  
Vol 12 (3) ◽  
pp. 109 ◽  
Author(s):  
Bhavesh D. Kevadiya ◽  
Liang Chen ◽  
Lu Zhang ◽  
Midhun B. Thomas ◽  
Rajesh N. Davé

Hydrophobic drug nanocrystals (NCs) manufactured by particle engineering have been extensively investigated for enhanced oral bioavailability and therapeutic effectiveness. However, there are significant drawbacks, including fast dissolution of the nanocrystals in the gastric environment, leading to physicochemical instability. To solves this issue, we developed an innovative technique that involves the encapsulation of nanocrystals in composite spherical microparticles (NCSMs). Fenofibrate (FNB) NCs (FNB-NCs) manufactured by a wet stirred media milling (WSMM) technique and an ionotropic crosslinking method were used for FNB-NC encapsulation within gastroresistant NCSMs. Various solid-state methods were used for characterizing NCSMs. The pH-sensitive NCSMs showed a site-specific release pattern at alkaline pH and nearly 0% release at low pH (gastric environment). This phenomenon was confirmed by a real-time in situ UV-imaging system known as the surface dissolution imager (SDI), which was used to monitor drug release events by measuring the color intensity and concentration gradient formation. All these results proved that our NCSM approach is an innovative idea in oral drug delivery systems, as it resolves significant challenges in the intestine-specific release of hydrophobic drugs while avoiding fast dissolution or burst release.



Sign in / Sign up

Export Citation Format

Share Document