scholarly journals An Approach for Estimating Geothermal Reservoir Productivity under Access Limitations Associated with Snowy and Mountainous Prospects

2021 ◽  
Author(s):  
Mitsuo Matsumoto

This chapter describes an approach to estimate reservoir productivity during the active exploration and development of a geothermal prospect. This approach allows a reservoir model to be updated by overcoming the severe time limitations associated with accessing sites for drilling and well testing under snowy and mountainous conditions. Performed in parallel with the conventional standard approach, the new approach enables us to obtain a first estimate of the reservoir productivity at an early time and to make successful project management decisions. Assuming a practical geothermal field, the procedures of the new approach are demonstrated here in detail. Finally, frequency distributions for the expected production rates and changes in the reservoir pressure at an arbitrary time are obtained during an assumed operational period.

1980 ◽  
Vol 20 (06) ◽  
pp. 555-566 ◽  
Author(s):  
Constance W. Miller

Abstract The early-time response in the well testing of a homogeneous reservoir customarily is expected to give a unit slope when the logarithm of pressure is plotted vs. the logarithm of time. It is shown that this response is a special case and that another nondimensional parameter must be defined to describe the set of curves that could take place for each value of the wellbore storage coefficient C . In addition, the effect of temperature changes along the bore is shown to increase the time when wellbore storage is important. Introduction The petroleum industry's technique of assessing oil and gas reservoirs by well testing has been extended to the geothermal field by a number of workers. However, at least two important differences between a geothermal field and an oil or gas field must be considered in analyzing geothermal well test data. First the kh/mu value of a geothermal field is usually much larger than that of an oil or gas field because the reservoir thickness h is greater in a geothermal field and the viscosity mu is smaller (k is the permeability). Second, heat loss in the wellbore, which can be ignored in oil and gas fields, is significant in geothermal bores.The concept of wellbore storage - which has been considered quite extensively and refined in such detailed studies as those of Agarwal et al., Wattenberger and Ramey, and Ramey - usually is treated as a boundary condition on the reservoir flow. The boundary condition used is (1) where dp w/dt is the flowing pressure change with time in the wellbore. However, dp w/dt is not necessarily independent of position in the well. When dp w/dt is dependent on the measurement point, a plot of log (p sf) vs. log (t) will not result in a unit slope at early times. This study will consider wellbore storage by looking at the flow in the well itself while treating the reservoir as simple homogeneous radial flow into the well.Heat loss from the well and temperature changes along the bore also have been ignored because oil and gas news can be treated as isothermal. Heat transfer from the well and heating of the fluid in the well is usually a very slow process. When very long times are considered, these temperature effects can become important. Once the early transient behavior is over and a semilog straight line of p sf vs. log(t) is expected in the pseudosteady region, temperature changes in the well can alter the slope of that line so that the slope would no longer be q mu/4 pi kh. The duration and importance of any temperature changes will be considered.A numerical model of transient two-phase flow in the wellbore with heat and mass transfer has been developed. It is used to investigate (1) the early-time interaction of the well flow with that of the reservoir and (2) the longer-time effect of temperature changes on the well test data. Concept of Wellbore Storage Wellbore storage is the capacity of the well to absorb or supply any part of a mass flow rate change out of a well/reservoir system. For a change in flow rate at the surface of the well, the sandface mass flow rate usually is expressed as (2) SPEJ P. 555^


2022 ◽  
Vol 9 ◽  
Author(s):  
Yifan Fan ◽  
Shikuan Zhang ◽  
Yonghui Huang ◽  
Zhonghe Pang ◽  
Hongyan Li

Recoverable geothermal resources are very important for geothermal development and utilization. Generally, the recovery factor is a measure of available geothermal resources in a geothermal field. However, it has been a pre-determined ratio in practice and sustainable utilization of geothermal resources was not considered in the previous calculation of recoverable resources. In this work, we have attempted to develop a method to calculate recoverable geothermal resources based on a numerical thermo-hydraulic coupled modeling of a geothermal reservoir under exploitation, with an assumption of sustainability. Taking a geothermal reservoir as an example, we demonstrate the effectiveness of the method. The recoverable geothermal resources are 6.85 × 1018 J assuming a lifetime of 100 years in a well doublet pattern for geothermal heating. We further discuss the influence of well spacing on the recoverable resources. It is found that 600 m is the optimal well spacing with maximum extracted energy that conforms to the limit of the pressure drop and no temperature drop in the production well. Under the uniform well distribution pattern for sustainable exploitation, the recovery factor is 26.2%, which is higher than the previous value of 15% when depending only on lithology. The proposed method for calculating the recoverable geothermal resources is instructive for making decisions for sustainable exploitation.


2021 ◽  
Author(s):  
Ayobami Ezekiel ◽  
Prince Oduh ◽  
Emmanuel Okoh ◽  
Collins Onah ◽  
Michael Ojah ◽  
...  

Abstract In this study, a simpler numerical model for calculating inter-well distance was developed. This model was developed as an alternative to the Ei-function used for computing pressure drops. The mainobjective of developing this model is tomake resolution of pilfering issues easyto resolve. With the developed model, calculations relating to pressure drops and more specifically, inter-well distance, can be done with greater ease and accuracy. In developing this model, the integral equation of the Eifunction in the pressure drop equation was solved numerically. The numerical solution reduced thepressure drop equation to a polynomial equation which is much easier to solve. The developed model was used to solve real problems. Results generated from it were compared with those obtained using previous approaches. Important informationsuch as well configuration, region of the reservoir, and transient history wherethe work is valid are stated. The development of the correlations and tables forthe range of validity and values of the Ei-function is a major quantum leap in well testing and analysis. It will be quite cumbersome to resolve integrals with unknowns, hence, methods of trials and errors have been resorted to over the years. However, this new approach resolved the pressure drop equation into a systemof polynomials which is much easier to solve. Consequently, the distance betweenpossibly interfering wells (which is an important variable during interference test) can now be gotten with ease. The developed model is valid within the range of validity of the Ei-function. Without doubt, this work will help redefine the pressure drop equation into a polynomial equation which can easily be resolved using any of the known approaches to solving problems involving polynomials. More so, getting the correct distance betweenthe two wells in question is pivotal to the test. With the model developed in this work, getting inter-well distance is now easier and more accurate.


Author(s):  
Hejuan Liu ◽  
Qi Li ◽  
Yang Gou ◽  
Liwei Zhang ◽  
Wentao Feng ◽  
...  

The utilization of geothermal energy can reduce CO2 emissions into the atmosphere. The reinjection of cooled return water from a geothermal field by a closed loop system is an important strategy for maintaining the reservoir pressure and prolonging the depletion of the geothermal reservoir by avoiding problems, e.g., water level drawdown, ground subsidence, and thermal pollution. However, the drawdown of water injectivity affected by physical and chemical clogging may occur in sandstone aquifers, and the reservoir temperature may be strongly affected by the reinjection of large amounts of cooled geothermal water, thus resulting in early thermal breakthrough at production wells and a decrease in production efficiency. In addition to the injection of cooled geothermal water, the injection of CO2 can be used to maintain the reservoir pressure and increase the injectivity of the reservoir by enhancing water–rock interactions. However, the thermal breakthrough and cooling effect of the geothermal reservoir may become complex when both CO2 and cooled geothermal water are injected into aquifers. In this paper, a simplified small-scale multilayered geological model is established based on a low-medium geothermal reservoir in Binhai district, Tianjin. The ECO2N module of the TOUGH2MP simulator is used to numerically simulate temperature and pressure responses in the geothermal reservoir while considering different treatment strategies (e.g., injection rates, temperatures, well locations, etc.). The simulation results show that a high injection pressure of CO2 greatly shortens the CO2 and thermal breakthrough at the production well. A much lower CO2 injection pressure is helpful for prolonging hot water production by maintaining the reservoir pressure and eliminating the cooling effect surrounding the production wells. Both pilot-scale and commercial-scale cooled water reinjection rates are considered. When the water production rate is low (2 kg/s), the temperature decrease at the production well is negligible at a distance of 500 m between two wells. However, when both the production and reinjection rates of cooled return water are increased to 100 m3/h, the temperature decrease in the production well exceeds 10 °C after 50 years of operation.


2015 ◽  
Author(s):  
S. A. Sokovnin ◽  
E. V. Tikhonov ◽  
A. B. Kharitonov ◽  
John Vian ◽  
D. L. Bakirov ◽  
...  

2020 ◽  
Author(s):  
Paolo Basile ◽  
Roberto Brogi ◽  
Favaro Lorenzo ◽  
Tiziana Mazzoni

<p><span><span>Social consensus is a </span><span>condition precedent for any intervention having an impact on the territory, such as geothermal power plants. Therefore, private investors studied and proposed innovative solution for the exploitation of the medium enthalpy geothermal resource, with “zero emissions” in atmosphere, with the target of minimizing its environmental impact. “Montenero” project, developed by GESTO Italia, complies with this precondition.</span></span></p><p><span><span>The area covered b</span><span>y the exploration and exploitation permit is located on the northern edge of the great geothermal anomaly of Mt. Amiata (Tuscany), about 10 km north of the geothermal field of Bagnore, included in the homonymous Concession of Enel Green Power.</span></span></p><p><span><span>The geological - structural setting of the area around the inactive volc</span><span>ano of Mt. Amiata has been characterized by researches for the geothermal field of Bagnore, carried out by Enel Green Power over the years. The geothermal reservoir is present in the limestone and evaporitic rocks of the “Falda Toscana”, below which stands the Metamorphic Basement, as testified by the wells of geothermal field of Bagnore. The foreseen reservoir temperature at the target depth of 1.800 m is 140 °C, with an incondensable gas content of 1,8% by weight.</span></span></p><p><span><span>The project was presented to the authorities in 2013 and it is </span><span>now undergoing exploitation authorization and features the construction of a 5 MW ORC (Organic Ranking Circle) binary power plant. The plant is fed by three production wells for a total mass flow rate of 700 t/h. The geothermal fluid is pumped by three ESPs (Electrical Submersible Pump) keeping the geothermal fluid in liquid state from the extraction through the heat exchangers to its final reinjection three wells.</span></span></p><p><span><span>The reinjection temperature is 70 °C and the circuit pressure is maintained above the </span><span>incondensable gas bubble pressure, i.e. 40 bar, condition which prevents also the formation of calcium carbonate scaling. The confinement of the geothermal fluid in a “closed loop system” is an important advantage from the environmental point of view: possible pollutants presented inside the geothermal fluid are not released into the environment and are directly reinjected in geothermal reservoir.</span></span></p><p><span><span>The </span><span>environmental authorization procedure (obtained) has taken into account all the environmental aspects concerning the natural matrices (air, water, ground, ...) potentially affected by the activities needed for the development, construction and operation of “Montenero” ORC geothermal power plant. A numerical modeling was designed and applied in order to estimate the effect of the cultivation activity and to assess the reinjection overpressure (seismic effect evaluation). The project also follows the “best practices” implemented in Italy by the “Guidelines for the usage of medium and high enthalpy geothermal resources” prepared in cooperation between the Ministry of Economic Development and the Ministry of the Environment.</span></span></p>


Author(s):  
A.F. Deon ◽  
D.D. Dmitriev ◽  
Yu.A. Menyaev

The widely known generators of Poisson random variables are associated with different modifications of the algorithm based on the convergence in probability of a sequence of uniform random variables to the created stochastic number. However, in some situations, this approach yields different discrete Poisson probability distributions and skipping in the generated numbers. This paper offers a new approach for creating Poisson random variables based on the complete twister generator of uniform random variables, using cumulative frequency technology. The simulation results confirm that probabilistic and frequency distributions of the obtained stochastic numbers completely coincide with the theoretical Poisson distribution. Moreover, combining this new approach with the tuning algorithm of basic twister generation allows for a significant increase in length of the created sequences without using additional RAM of the computer


Sign in / Sign up

Export Citation Format

Share Document