scholarly journals The Activity of New Bio-Agent to Control Cucumovirus Cucumber Mosaic Virus (CMV)

2021 ◽  
Author(s):  
Maadh Abdulwahab Alfahad

CMV virus is worldwide, especially in temperate regions, where it can infect more than 800 plant species belonging to about 40 families. Although the main factor that the plant takes in order not to be infected is because it has preventive means that inhibit the direction of pathogens so that the infection occurs under conditions that suit it and suit its success. Cucumber Mosaic Virus belongs to the group of plant viruses to the genus Cucumovirus, as the virus particles are symmetrically spherical, not enveloped, with a diameter of 29 nm, and the virus has several strains that differ among themselves in terms of factors, symptoms of infection and methods of transmission. The stimulation of induced systemic resistance (ISR) leads to the interest of many researchers. Many types of research and studies have been conducted in the field of biochemical changes in the form of modulating the host’s cell wall. The production of phytoalexin. And the manufacture of pathogen-related proteins (Pathogenesis Related Protein). It has been indicated that treatment with various factors, for example (non-pathogenic organisms, weak pathogens, chemical and industrial compounds, plant extracts, nutritional supplements) has the ability to activate plant defense mechanisms and induce systemic resistance against pathogens. In the field of biological control, bacterial types have been used on many pathogens, including fluorescens Pseudomonas and Bacillus subtillus, as they have proven effective in controlling many different fungal and bacterial pathogens as well as viral, and the reason is due to the ability of the bacteria to produce many growth regulators and thus stimulate resistance The systemic plant and the production of phytotoxins are in addition to being one of the most important growth stimuli. New methods have been used to resist viruses by using natural nutritional supplements with effective effect, because plants have defensive means, and for this reason, the use of these supplements can be stimulated in addition to the preventive aspect, a decrease in infection parameters, and an increase in growth indicators and outcome. Several methods have been relied upon to diagnose viruses, the first being the symptoms of reagents, and they are of basic methods. After that, serological tests were adopted, which are highly specialized and accurate in diagnosing viruses, and electron microscopy was used as a method to detect the size and shape of viruses. Polymerase Chain Reaction (PCR) technology is a fast and accurate way to detect plant viruses compared to other tests, such as the ELISA test and plant reagents.

Plant Disease ◽  
2005 ◽  
Vol 89 (8) ◽  
pp. 914-914 ◽  
Author(s):  
T. Ghotbi ◽  
K. Bananej

Banana bunchy top virus (BBTV), Banana streak virus (BSV), and Cucumber mosaic virus (CMV) (genus Cucumovirus, family Bromoviridae [2]) cause widespread economic losses on banana (Musa sp.) throughout the world and have been reported on banana in different countries including Pakistan along its southeastern border with Iran (1). A survey was conducted from 2004–2005 to identify viruses infecting banana in greenhouses in different growing areas in northern Iran, Mazandaran Province (Sari, Babol, Behshahr, and Ghaemshahr cities). A total of 180 samples from seven banana-growing greenhouses with symptoms of mosaic, chlorosis, stunting, and fruit malformation were collected. All samples were tested for CMV with polyclonal antibodies using double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) (CMV strain D subgroup I; gifted by H. Lecoq, INRA, Avignion, France). For sap inoculation onto indicator test plants, selected ELISA-positive leaf samples were ground in chilled 0.01 M phosphate buffer, pH 7.0, containing 0.15% 2-mercaptoethanol. Chlorotic and necrotic local lesions developed on Chenopodium amaranticolor and Vigna unguiculata (cv. Mashad local) 10 and 12 days postinoculation, respectively. Cucumis sativus and Nicotiana rustica also developed systemic mosaic symptoms (3). All indicator test plants were rechecked for the presence of CMV using DAS-ELISA. On the basis of serological tests and indicator host plants reactions, CMV was identified in 32% of samples including Sari (13.8%), Babol (2.7%), Behshahr (10%) and Ghahemshahr (5%), respectively. Fifty-five samples did not react with CMV antiserum but the presence of symptoms resembling BBTV and BSV (4) emphasizes the need for further investigations to confirm the presence and identities of other viruses. References: (1) J. Bird and F. L. Wellman. Phytopathology 52:286, 1962. (2) S. K. Choi et al. J. Virol. Methods 83:67, 1999. (3) A. J. Gibbs and B. D. Harrison. Descriptions of Plant Viruses. No.1. CMI/AAB, Surrey, England, 1970. (4) R. C. Ploetz et al., eds. Compendium of Tropical Fruit Diseases. The American Phytopathological Society, St. Paul, MN, 1994.


Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 593-593 ◽  
Author(s):  
Y. K. Chen ◽  
Y. S. Chang ◽  
Y. W. Lin ◽  
M. Y. Wu

Desert rose (Adenium obesum (Forssk.) Roem. & Schult, family Apocynaceae) is native to southeastern Africa, and is a perennial potted ornamental with colorful flowers that are popular in Taiwan. Symptoms of mosaic and chlorotic ringspots and line patterns on leaves were observed in July 2010, on all eight plants in a private garden in Potzu, Chiayi, Taiwan. Spherical virus particles with a diameter of approximately 28 nm were observed in crude sap prepared from symptomatic leaves. Virus culture was established by successive local lesion isolation in Chenopodium quinoa and was maintained in the systemic host Nicotiana tabacum van Hicks. The virus was mechanically transmissible to indicator plants and induced symptoms similar to those incited by Cucumber mosaic virus (CMV). Observed symptoms included local lesions on inoculated leaves of C. amaranticolor and systemic mosaic in Cucumis sativus, Lycopersicon esculentum, N. benthamiana, N. glutinosa, and N. rustica. On N. tabacum, necrotic ringspots developed on inoculated leaves followed by systemic mosaic. Serological tests using ELISA assays and western blotting indicated that the virus reacted positively to a rabbit antiserum prepared to CMV (4). Amplicons of an expected size (1.1 kb) were obtained in reverse transcription-PCR with primers specific to the 3′-half of CMV RNA 3 (3) using total RNA extracted from infected desert rose and N. tabacum. The amplified cDNA fragment was cloned and sequenced (GenBank Accession No. AB667971). Nucleotide sequences of the coat protein open reading frame (CP ORF) (657 nt) had 92 to 96% and 76 to 77% sequence identity to those of CMV in subgroups I (GenBank Accession Nos. NC_001440, D00385, M57602, D28780, and AB008777) and II (GenBank Accession Nos. L15336, AF127976, AF198103, and M21464), respectively. Desert roses infected by Tomato spotted wilt virus (TSWV) (1) and CMV (2) have been reported previously. In spite of the plants showing mosaic symptoms similar to that caused by CMV (2) and chlorotic ringspots and line patterns caused by TSWV (1), only CMV was detected in and isolated from these infected desert roses. However, the possibility of mixed infection of CMV and other viruses were not excluded in this research. To our knowledge, this is the first report of CMV infection in desert rose plants occurring in Taiwan. References: (1) S. Adkins and C. A. Baker. Plant Dis. 89:526, 2005. (2) C. A. Baker et al. Plant Dis. 87:1007, 2003. (3) Y. K. Chen et al. Arch. Virol. 146:1631, 2001. (4) Y. K. Chen and C. C. Yang. Plant Dis. 89:529, 2005.


Plant Disease ◽  
1998 ◽  
Vol 82 (12) ◽  
pp. 1298-1303 ◽  
Author(s):  
M. S. Montasser ◽  
M. E. Tousignant ◽  
J. M. Kaper

A benign viral satellite RNA, in combination with a mild strain of cucumber mosaic virus (CMV-S), was used as a “vaccine” or “preinoculum” to demonstrate the feasibility of protecting pepper (Capsicum annuum cv. California Wonder) and melon (Cucurbita melo cv. Janus des Canaries) against two severe CMV strains, CMV-D and CMV-16, in the final 2 years of a 4-year pilot field and greenhouse experiment. In the field, healthy pepper and melon seedlings challenged with CMV-D and CMV-16 reduced yields by 33 to 60%; CMV-S caused only limited yield reduction in pepper and had no effect on the yield of melon. Different time intervals between preinoculation of pepper and melon seedlings with CMV-S and challenge inoculation with the severe CMV strains were tested. All plants challenged 3 weeks after vaccination showed nearly complete protection from subsequent infection by severe strains. The yield from preinoculated and challenged pepper plants was 80% that of untreated plants, while the yield from preinoculated and challenged melon plants was increased slightly over the untreated control plants. The use of this technology for biological control of plant viruses is discussed.


2016 ◽  
Vol 7 ◽  
Author(s):  
Antonella Vitti ◽  
Elisa Pellegrini ◽  
Cristina Nali ◽  
Stella Lovelli ◽  
Adriano Sofo ◽  
...  

2001 ◽  
Vol 75 (17) ◽  
pp. 8045-8053 ◽  
Author(s):  
Hideaki Nagano ◽  
Kazuyuki Mise ◽  
Iwao Furusawa ◽  
Tetsuro Okuno

ABSTRACT Plant viruses have movement protein (MP) gene(s) essential for cell-to-cell movement in hosts. Cucumber mosaic virus (CMV) requires its own coat protein (CP) in addition to the MP for intercellular movement. Our present results using variants of both CMV and a chimeric Brome mosaic virus with the CMV MP gene revealed that CMV MP truncated in its C-terminal 33 amino acids has the ability to mediate viral movement independently of CP. Coexpression of the intact and truncated CMV MPs extremely reduced movement of the chimeric viruses, suggesting that these heterogeneous CMV MPs function antagonistically. Sequential deletion analyses of the CMV MP revealed that the dispensability of CP occurred when the C-terminal deletion ranged between 31 and 36 amino acids and that shorter deletion impaired the ability of the MP to promote viral movement. This is the first report that a region of MP determines the requirement of CP in cell-to-cell movement of a plant virus.


Plant Disease ◽  
1997 ◽  
Vol 81 (11) ◽  
pp. 1331-1331 ◽  
Author(s):  
J. R. Fisher ◽  
M.-C. Sanchez-Cuevas ◽  
S. T. Nameth ◽  
V. L. Woods ◽  
C. W. Ellett

Eryngium amethystinum (amethyst sea holly) is a herbaceous plant commonly grown as an ornamental perennial in U.S.D.A. hardiness zones 3 to 8. The plant thrives in dry areas with infertile soils and the flowers are often used in dried floral arrangements. Canna spp. (Canna), soft perennials (U.S.D.A. zone 9 and above), are becoming popular flowering plants because of their bright flowers and spectacular foliage. There are a variety of species that fall under the heading Canna spp., of which the most popular are C. glauca, C. indica, C. edulis, and C. iridiflora. Hybrids of Aquilegia (garden columbine), a hardy perennial (U.S.D.A. zones 3 to 9), flower in late spring through early summer. The genus is made up of a wide variety of cultivars. E. amethystinum exhibiting severe mosaic, yellowing, and stunting, along with Canna plants exhibiting severe stunting, chlorotic and distorted foliage, and mosaic, and garden columbine plants exhibiting stunting, leaf curl, chlorosis, and mosaic, collected from commercial plantings throughout the central Ohio area, were analyzed for the presence of virus infection with viral-associated, double-stranded RNA (dsRNA) analysis. dsRNA analysis resulted in a banding profile typical of that seen with members of the cucumovirus family of plant viruses. Plants positive for cucumovurus-like dsRNA were tested with a direct antibody sandwich enzyme-linked immunosorbent assay (ELISA). ELISA results confirmed the presence of cucumber mosaic virus (CMV) in all symptomatic plants tested. No evidence of dsRNA or CMV was found in any of the asymptomatic plants tested. Because all of these hosts are common in the perennial garden, they could serve as a reservoir host of CMV for other plants in the garden. This is the first report of CMV in E. amethystinum, Canna spp., and Aquilegia hybrids in Ohio.


2010 ◽  
Vol 9 (3) ◽  
pp. 487-490
Author(s):  
Weny Musa ◽  
Hersanti Hersanti ◽  
Achmad Zainuddin ◽  
Roekmi-ati Tjokronegoro

The poriferasta-5.22E.25-trien-3β-ol compound of leaves of this plant Clerodendrum paniculatum has activity as an inducer agent of plant systemic resistance of red plant toward Cucumber Mosaic Viruses (CMV), the inhibition activity compound shows 82% inhibition activity at 300 ppm. The structure of these compound were determined on the basis of spectroscopic data including UV, IR, 1H-NMR, 13C-NMR and 2D-NMR   Keywords: Poriferasta-5.22E.25-trien-3β-ol, Clerodendrum paniculatum, induction of systemic resistance, CMV


Sign in / Sign up

Export Citation Format

Share Document