scholarly journals Blockchain-Empowered Mobile Edge Intelligence, Machine Learning and Secure Data Sharing

2021 ◽  
Author(s):  
Yao Du ◽  
Shuxiao Miao ◽  
Zitian Tong ◽  
Victoria Lemieux ◽  
Zehua Wang

Driven by recent advancements in machine learning, mobile edge computing (MEC) and the Internet of things (IoT), artificial intelligence (AI) has become an emerging technology. Traditional machine learning approaches require the training data to be collected and processed in centralized servers. With the advent of new decentralized machine learning approaches and mobile edge computing, the IoT on-device data training has now become possible. To realize AI at the edge of the network, IoT devices can offload training tasks to MEC servers. However, those distributed frameworks of edge intelligence also introduce some new challenges, such as user privacy and data security. To handle these problems, blockchain has been considered as a promising solution. As a distributed smart ledger, blockchain is renowned for high scalability, privacy-preserving, and decentralization. This technology is also featured with automated script execution and immutable data records in a trusted manner. In recent years, as quantum computers become more and more promising, blockchain is also facing potential threats from quantum algorithms. In this chapter, we provide an overview of the current state-of-the-art in these cutting-edge technologies by summarizing the available literature in the research field of blockchain-based MEC, machine learning, secure data sharing, and basic introduction of post-quantum blockchain. We also discuss the real-world use cases and outline the challenges of blockchain-empowered intelligence.

2019 ◽  
Vol 70 (3) ◽  
pp. 214-224
Author(s):  
Bui Ngoc Dung ◽  
Manh Dzung Lai ◽  
Tran Vu Hieu ◽  
Nguyen Binh T. H.

Video surveillance is emerging research field of intelligent transport systems. This paper presents some techniques which use machine learning and computer vision in vehicles detection and tracking. Firstly the machine learning approaches using Haar-like features and Ada-Boost algorithm for vehicle detection are presented. Secondly approaches to detect vehicles using the background subtraction method based on Gaussian Mixture Model and to track vehicles using optical flow and multiple Kalman filters were given. The method takes advantages of distinguish and tracking multiple vehicles individually. The experimental results demonstrate high accurately of the method.


2019 ◽  
Vol 11 (3) ◽  
pp. 284 ◽  
Author(s):  
Linglin Zeng ◽  
Shun Hu ◽  
Daxiang Xiang ◽  
Xiang Zhang ◽  
Deren Li ◽  
...  

Soil moisture mapping at a regional scale is commonplace since these data are required in many applications, such as hydrological and agricultural analyses. The use of remotely sensed data for the estimation of deep soil moisture at a regional scale has received far less emphasis. The objective of this study was to map the 500-m, 8-day average and daily soil moisture at different soil depths in Oklahoma from remotely sensed and ground-measured data using the random forest (RF) method, which is one of the machine-learning approaches. In order to investigate the estimation accuracy of the RF method at both a spatial and a temporal scale, two independent soil moisture estimation experiments were conducted using data from 2010 to 2014: a year-to-year experiment (with a root mean square error (RMSE) ranging from 0.038 to 0.050 m3/m3) and a station-to-station experiment (with an RMSE ranging from 0.044 to 0.057 m3/m3). Then, the data requirements, importance factors, and spatial and temporal variations in estimation accuracy were discussed based on the results using the training data selected by iterated random sampling. The highly accurate estimations of both the surface and the deep soil moisture for the study area reveal the potential of RF methods when mapping soil moisture at a regional scale, especially when considering the high heterogeneity of land-cover types and topography in the study area.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4798
Author(s):  
Fangni Chen ◽  
Anding Wang ◽  
Yu Zhang ◽  
Zhengwei Ni ◽  
Jingyu Hua

With the increasing deployment of IoT devices and applications, a large number of devices that can sense and monitor the environment in IoT network are needed. This trend also brings great challenges, such as data explosion and energy insufficiency. This paper proposes a system that integrates mobile edge computing (MEC) technology and simultaneous wireless information and power transfer (SWIPT) technology to improve the service supply capability of WSN-assisted IoT applications. A novel optimization problem is formulated to minimize the total system energy consumption under the constraints of data transmission rate and transmitting power requirements by jointly considering power allocation, CPU frequency, offloading weight factor and energy harvest weight factor. Since the problem is non-convex, we propose a novel alternate group iteration optimization (AGIO) algorithm, which decomposes the original problem into three subproblems, and alternately optimizes each subproblem using the group interior point iterative algorithm. Numerical simulations validate that the energy consumption of our proposed design is much lower than the two benchmark algorithms. The relationship between system variables and energy consumption of the system is also discussed.


2020 ◽  
Author(s):  
Paul Francoeur ◽  
Tomohide Masuda ◽  
David R. Koes

One of the main challenges in drug discovery is predicting protein-ligand binding affinity. Recently, machine learning approaches have made substantial progress on this task. However, current methods of model evaluation are overly optimistic in measuring generalization to new targets, and there does not exist a standard dataset of sufficient size to compare performance between models. We present a new dataset for structure-based machine learning, the CrossDocked2020 set, with 22.5 million poses of ligands docked into multiple similar binding pockets across the Protein Data Bank and perform a comprehensive evaluation of grid-based convolutional neural network models on this dataset. We also demonstrate how the partitioning of the training data and test data can impact the results of models trained with the PDBbind dataset, how performance improves by adding more, lower-quality training data, and how training with docked poses imparts pose sensitivity to the predicted affinity of a complex. Our best performing model, an ensemble of 5 densely connected convolutional newtworks, achieves a root mean squared error of 1.42 and Pearson R of 0.612 on the affinity prediction task, an AUC of 0.956 at binding pose classification, and a 68.4% accuracy at pose selection on the CrossDocked2020 set. By providing data splits for clustered cross-validation and the raw data for the CrossDocked2020 set, we establish the first standardized dataset for training machine learning models to recognize ligands in non-cognate target structures while also greatly expanding the number of poses available for training. In order to facilitate community adoption of this dataset for benchmarking protein-ligand binding affinity prediction, we provide our models, weights, and the CrossDocked2020 set at https://github.com/gnina/models.


2021 ◽  
Vol 13 (19) ◽  
pp. 3859
Author(s):  
Joby M. Prince Czarnecki ◽  
Sathishkumar Samiappan ◽  
Meilun Zhou ◽  
Cary Daniel McCraine ◽  
Louis L. Wasson

The radiometric quality of remotely sensed imagery is crucial for precision agriculture applications because estimations of plant health rely on the underlying quality. Sky conditions, and specifically shadowing from clouds, are critical determinants in the quality of images that can be obtained from low-altitude sensing platforms. In this work, we first compare common deep learning approaches to classify sky conditions with regard to cloud shadows in agricultural fields using a visible spectrum camera. We then develop an artificial-intelligence-based edge computing system to fully automate the classification process. Training data consisting of 100 oblique angle images of the sky were provided to a convolutional neural network and two deep residual neural networks (ResNet18 and ResNet34) to facilitate learning two classes, namely (1) good image quality expected, and (2) degraded image quality expected. The expectation of quality stemmed from the sky condition (i.e., density, coverage, and thickness of clouds) present at the time of the image capture. These networks were tested using a set of 13,000 images. Our results demonstrated that ResNet18 and ResNet34 classifiers produced better classification accuracy when compared to a convolutional neural network classifier. The best overall accuracy was obtained by ResNet34, which was 92% accurate, with a Kappa statistic of 0.77. These results demonstrate a low-cost solution to quality control for future autonomous farming systems that will operate without human intervention and supervision.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yunru Zhang ◽  
Debiao He ◽  
Kim-Kwang Raymond Choo

Internet of Things (IoT) and cloud computing are increasingly integrated, in the sense that data collected from IoT devices (generally with limited computational and storage resources) are being sent to the cloud for processing, etc., in order to inform decision making and facilitate other operational and business activities. However, the cloud may not be a fully trusted entity, like leaking user data or compromising user privacy. Thus, we propose a privacy-preserving and user-controlled data sharing architecture with fine-grained access control, based on the blockchain model and attribute-based cryptosystem. Also, the consensus algorithm in our system is the Byzantine fault tolerance mechanism, rather than Proof of Work.


Author(s):  
Jingwen Pan ◽  
Jie Cui ◽  
Lu Wei ◽  
Yan Xu ◽  
Hong Zhong

Sign in / Sign up

Export Citation Format

Share Document