scholarly journals Novel Hemoglobin from Synechocystis sp. PCC 6803: Shedding Light on the Structure-Function Relationship and Its Biotechnological Applications

2021 ◽  
Author(s):  
Mohd. Asim Khan ◽  
Sheetal Uppal ◽  
Suman Kundu

Cyanobacteria are oxygenic photosynthetic prokaryotes, practically present in every plausible environment on the earth. In 1996, the first cyanobacterial genome was sequenced from Synechocystis sp. PCC 6803 and the cyanobacterial genome database has been continuously growing with genomes from more than 300 cyanobacterial and other related species, so far. Synechocystis sp. PCC 6803 is one of the best-characterized cyanobacteria and has developed into a model cyanobacterium that scientists are using throughout the world. At the same time, the field of hemoglobin was undergoing a breakthrough with the identification of new globins in all three kingdoms of life including cyanobacteria. Since then, the newly identified globins in the cyanobacteria are raising intriguing questions about their structure and physiological functions, which are quite different from vertebrate’s hemoglobin and myoglobin. These hemoglobins have displayed unprecedented stability, unique heme coordination, novel conformational changes, and other properties that are not often observed in the globin superfamily. This chapter provides an overview of the unique globin from Synechocystis sp. PCC 6803, its interacting protein partners, proposed functions, and its biotechnological implications including potential in the field of artificial oxygen carriers.

1991 ◽  
Vol 266 (17) ◽  
pp. 11111-11115
Author(s):  
M. Ikeuchi ◽  
B. Eggers ◽  
G.Z. Shen ◽  
A. Webber ◽  
J.J. Yu ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anushree Bachhar ◽  
Jiri Jablonsky

AbstractPhosphoketolase (PKET) pathway is predominant in cyanobacteria (around 98%) but current opinion is that it is virtually inactive under autotrophic ambient CO2 condition (AC-auto). This creates an evolutionary paradox due to the existence of PKET pathway in obligatory photoautotrophs. We aim to answer the paradox with the aid of bioinformatic analysis along with metabolic, transcriptomic, fluxomic and mutant data integrated into a multi-level kinetic model. We discussed the problems linked to neglected isozyme, pket2 (sll0529) and inconsistencies towards the explanation of residual flux via PKET pathway in the case of silenced pket1 (slr0453) in Synechocystis sp. PCC 6803. Our in silico analysis showed: (1) 17% flux reduction via RuBisCO for Δpket1 under AC-auto, (2) 11.2–14.3% growth decrease for Δpket2 in turbulent AC-auto, and (3) flux via PKET pathway reaching up to 252% of the flux via phosphoglycerate mutase under AC-auto. All results imply that PKET pathway plays a crucial role under AC-auto by mitigating the decarboxylation occurring in OPP pathway and conversion of pyruvate to acetyl CoA linked to EMP glycolysis under the carbon scarce environment. Finally, our model predicted that PKETs have low affinity to S7P as a substrate.


FEBS Letters ◽  
2011 ◽  
Vol 585 (3) ◽  
pp. 585-589 ◽  
Author(s):  
Marina G. Rakhimberdieva ◽  
Fedor I. Kuzminov ◽  
Irina V. Elanskaya ◽  
Navassard V. Karapetyan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document