scholarly journals Current Advances Research in Nutraceutical Compounds of Legumes, Pseudocereals and Cereals

2021 ◽  
Author(s):  
Salvador Priego-Poyato ◽  
Maria Rodrigo-Garcia ◽  
Julia Escudero-Feliu ◽  
Maria Garcia-Costela ◽  
Elena Lima-Cabello ◽  
...  

The increase of the Western-type diet and life-style, with high content of highly processed fats, salt and sugar, as well as sedentary life, is directly linked to an increasing incidence of chronic diseases such as diabetes and obesity, cancer, cardiovascular diseases or stroke, and inflammatory-related diseases, which are a great challenge in global health and are usually associated with negative effects of globalization: rapid urbanization, diet and increased sedentary life worldwide. This has brought new interest and increased research into plant-based diets. In this context, the implementation in the diet of legumes, cereals and pseudo-cereals, due to their nutraceutical properties, which is interesting as well as advisable. These foods, in addition of having a high nutritional value themselves, have synergistic properties as part of a balanced diet. For example, most legumes are rich in lysine which is scarce in cereals, and these are rich in sulphur amino acids, such as methionine, while these amino acids are scarce in legumes and are of great importance for the central nervous system development. These foods or part of a food, due to their qualities, and that they provide health benefits can be classified as nutraceuticals. In addition, due to their health benefits beyond nutritional properties, can be classified as functional foods, promoting prevention and treatment for the above mentioned diseases, among others. This double function is due mainly to the proteins and the presence of various secondary metabolites and bioactive compounds in these foods of plant (grain and seed) origin. Last discovered knowledge and research features will be described in the present book chapter.


Author(s):  
Nikola Sobot ◽  
Tanja Sobot ◽  
Katarina Radonjic ◽  
Tamara Nikolic Turnic ◽  
Anica Petkovic ◽  
...  

AbstractSulfur-containing amino acids are integral part of molecular mechanisms which underlie many aspects of cellular function and homeostasis, facilitated by reversible changes in oxidation states of sulfur atoms. Dysregulation of these pathways is associated with diverse pathologies, notably of the cardiovascular system, which are typically characterized by inappropriate plasma levels of sulfur-containing amino acids. The aim of this study was to assess the acute, direct effects of sulfur-containing amino acids and inorganic NaHS, as H2S donor, on cardiodynamic parameters in homocysteine treated rats. Moderate hyperhomocysteinemia did not cause significant decrease in myocardial contractility, but our findings suggest that NaHS and L-methionine cause negative effects on cardiac function in hearts of the rats treated with homo-cysteine, even in a single administration. Further investigations need to be carried out with purpose of better understanding and highlightening the impact of Hcy and sulphur amino acids on cardiac function.



Author(s):  
М.Е. Лопаткина ◽  
В.С. Фишман ◽  
М.М. Гридина ◽  
Н.А. Скрябин ◽  
Т.В. Никитина ◽  
...  

Проведен анализ генной экспрессии в нейронах, дифференцированных из индуцированных плюрипотентных стволовых клеток пациентов с идиопатическими интеллектуальными нарушениями и реципрокными хромосомными мутациями в регионе 3p26.3, затрагивающими единственный ген CNTN6. Для нейронов с различным типом хромосомных аберраций была показана глобальная дисрегуляция генной экспрессии. В нейронах с вариациями числа копий гена CNTN6 была снижена экспрессия генов, продукты которых вовлечены в процессы развития центральной нервной системы. The gene expression analysis of iPSC-derived neurons, obtained from patients with idiopathic intellectual disability and reciprocal microdeletion and microduplication in 3p26.3 region affecting the single CNTN6 gene was performed. The global gene expression dysregulation was demonstrated for cells with CNTN6 copy number variation. Gene expression in neurons with CNTN6 copy number changes was downregulated for genes, whose products are involved in the central nervous system development.



2008 ◽  
Vol 1 (4) ◽  
pp. A353
Author(s):  
Shenandoah Robinson ◽  
Qing Li

Introduction Many infants born very preterm who suffer brain damage most likely experienced a combined insult from intrauterine infection and placental insufficiency. Damage is thought to be synergistic rather than additive but the mechanisms of combined injury remain elusive. A combination of lipopolysaccharide-induced inflammation and hypoxia-ischemia has been used in rats to model the dual insult that occurs in human infants prenatally. Erythropoietin, a pleiotrophic cytokine that is essential for central nervous system development, ameliorates brain injury after isolated hypoxic-ischemic or inflammatory insults through different intracellular signaling pathways. We hypothesized that exogenous neonatal EPO administration would lessen the damage of a combined prenatal insult in rats. Methods On embryonic Day 18 fetal rats experienced 60 minutes of transient uterine artery occlusion with or without intracervical LPS administration with sham controls receiving surgery but no occlusion and saline for LPS. Survival was recorded and histological biochemical and functional assays were performed. Means were compared with ANOVA with Tukey HSD post hoc analysis. Results After a combined insult of HI and 0.15-mg/kg LPS on E18 the survival of pups by postnatal Day 1 (P1) decreased from 77% with HI alone to 22% for LPS plus HI. When exogenous systemic EPO was administered P1–P3 survival to P9 improved markedly from 40% (2 of 5) for saline-treated insult pups to 100% (6 of 6) for EPO-treated. Initial histological analyses show EPO decreases the number of brain activated caspase 3 and activated microglia by P9. Additional analyses will be presented. Conclusion As at least 60% of placentas from infants born pre-term show evidence of chorioamnionitis, assessment of the impact of exogenous EPO on a model of a combination injury is essential prior to proceeding with a clinical trial. Initial results indicate neonatal exogenous EPO mitigates damage from the combined insult.



2013 ◽  
Vol 14 (2) ◽  
pp. 160-166
Author(s):  
Diego Gazzolo ◽  
Laura D. Serpero ◽  
Alessandro Frigiola ◽  
Raul Abella ◽  
Alessandro Giamberti ◽  
...  


2020 ◽  
Vol 20 (17) ◽  
pp. 1781-1790
Author(s):  
Noor Anisah Abu Yazit ◽  
Norsham Juliana ◽  
Srijit Das ◽  
Nur Islami Mohd Fahmi Teng ◽  
Nadia Mohd Fahmy ◽  
...  

Postoperative Cognitive Dysfunction (POCD) refers to the condition of neurocognitive decline following surgery in a cognitive and sensory manner. There are several risk factors, which may be life-threatening for this condition. Neuropsychological assessment of this condition is very important. In the present review, we discuss the association of apolipoprotein epsilon 4 (APOE ε4) and few miRNAs with POCD, and highlight the clinical importance for prognosis, diagnosis and treatment of POCD. Microarray is a genome analysis that can be used to determine DNA abnormalities. This current technique is rapid, efficient and high-throughout. Microarray techniques are widely used to diagnose diseases, particularly in genetic disorder, chromosomal abnormalities, mutations, infectious diseases and disease-relevant biomarkers. MicroRNAs (miRNAs) are a class of non-coding RNAs that are widely found distributed in eukaryotes. Few miRNAs influence the nervous system development, and nerve damage repair. Microarray approach can be utilized to understand the miRNAs involved and their pathways in POCD development, unleashing their potential to be considered as a diagnostic marker for POCD. This paper summarizes and identifies the studies that use microarray based approaches for POCD analysis. Since the application of microarray in POCD is expanding, there is a need to review the current knowledge of this approach.



Sign in / Sign up

Export Citation Format

Share Document