scholarly journals DEVONIAN-CARBONIFEROUS MAGMATISM AND METALLOGENY IN THE SOUTH URAL ACCRETIONARY-COLLISIONAL SYSTEM

2021 ◽  
Vol 12 (2) ◽  
pp. 365-391 ◽  
Author(s):  
A. M. Kosarev ◽  
A. G. Vladimirov ◽  
A. I. Khanchuk ◽  
D. N. Salikhov ◽  
V. B. Kholodnov ◽  
...  

The oceanic stage in the history of the South Urals completed in the Ordovician – Early Silurian. The Ordovician through Devonian events in the region included the formation of an island arc in the East Ural zone from the Middle Ordovician to Silurian; westward motion of the subduction zone in the Late Silurian – Early Devonian and the origin of a trench along the Main Ural Fault and the Uraltau Uplift; volcanic eruptions and intrusions in the Magnitogorsk island arc system in the Devonian. The Middle-Late Paleozoic geodynamic evolution of uralides and altaides consisted in successive alternation of subduction and collisional settings at the continent-ocean transition. The greatest portion of volcanism in the major Magnitogorsk zone was associated with subduction and correlated in age and patterns of massive sulfide mineralization (VMS) with Early – Middle Devonian ore-forming events in Rudny Altai. Within-plate volcanism at the onset of volcanic cycles records the Early (D1e2) and Middle (D2ef2) Devonian slab break off. The volcanic cycles produced, respectively, the Buribay and Upper Tanalyk complexes with VMS mineralization in the Late Emsian; the Karamalytash complex and its age equivalents in the Late Eifelian – Early Givetian, as well as the lower Ulutau Formation in the Givetian. Slab break off in the Late Devonian – Early Carboniferous obstructed the Magnitogorsk island arc and supported asthenospheric diapirism. A new subduction zone dipping westward and the Aleksandrovka island arc formed in the Late Devonian – Early Carboniferous. The Early Carboniferous collision and another event of obstructed subduction led to a transform margin setting corresponding to postcollisional relative sliding of plates that produced another slab tear. Postcollisional magmatism appears as alkaline gabbro-granitic intrusives with related rich Ti-magnetite mineralization (C1). Transform faulting persisted in the Middle Carboniferous through Permian, when the continent of Eurasia completed its consolidation. The respective metallogenic events included formation of Cu-Ni picritic dolerites (C2–3), as well as large-scale gold and Mo-W deposits in granites (P1–2).

2020 ◽  
Vol 122 ◽  
pp. 103500 ◽  
Author(s):  
E.V. Belogub ◽  
N.R. Ayupova ◽  
V.G. Krivovichev ◽  
K.A. Novoselov ◽  
I.A. Blinov ◽  
...  

Geobios ◽  
1995 ◽  
Vol 28 ◽  
pp. 357-359 ◽  
Author(s):  
Alexander Ivanov

Solid Earth ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. 341-372 ◽  
Author(s):  
Jean-Baptiste P. Koehl ◽  
Steffen G. Bergh ◽  
Tormod Henningsen ◽  
Jan Inge Faleide

Abstract. The SW Barents Sea margin experienced a pulse of extensional deformation in the Middle–Late Devonian through the Carboniferous, after the Caledonian Orogeny terminated. These events marked the initial stages of formation of major offshore basins such as the Hammerfest and Nordkapp basins. We mapped and analyzed three major fault complexes, (i) the Måsøy Fault Complex, (ii) the Rolvsøya fault, and (iii) the Troms–Finnmark Fault Complex. We discuss the formation of the Måsøy Fault Complex as a possible extensional splay of an overall NE–SW-trending, NW-dipping, basement-seated Caledonian shear zone, the Sørøya–Ingøya shear zone, which was partly inverted during the collapse of the Caledonides and accommodated top–NW normal displacement in Middle to Late Devonian–Carboniferous times. The Troms–Finnmark Fault Complex displays a zigzag-shaped pattern of NNE–SSW- and ENE–WSW-trending extensional faults before it terminates to the north as a WNW–ESE-trending, NE-dipping normal fault that separates the southwesternmost Nordkapp basin in the northeast from the western Finnmark Platform and the Gjesvær Low in the southwest. The WNW–ESE-trending, margin-oblique segment of the Troms–Finnmark Fault Complex is considered to represent the offshore prolongation of a major Neoproterozoic fault complex, the Trollfjorden–Komagelva Fault Zone, which is made of WNW–ESE-trending, subvertical faults that crop out on the island of Magerøya in NW Finnmark. Our results suggest that the Trollfjorden–Komagelva Fault Zone dies out to the northwest before reaching the western Finnmark Platform. We propose an alternative model for the origin of the WNW–ESE-trending segment of the Troms–Finnmark Fault Complex as a possible hard-linked, accommodation cross fault that developed along the Sørøy–Ingøya shear zone. This brittle fault decoupled the western Finnmark Platform from the southwesternmost Nordkapp basin and merged with the Måsøy Fault Complex in Carboniferous times. Seismic data over the Gjesvær Low and southwesternmost Nordkapp basin show that the low-gravity anomaly observed in these areas may result from the presence of Middle to Upper Devonian sedimentary units resembling those in Middle Devonian, spoon-shaped, late- to post-orogenic collapse basins in western and mid-Norway. We propose a model for the formation of the southwesternmost Nordkapp basin and its counterpart Devonian basin in the Gjesvær Low by exhumation of narrow, ENE–WSW- to NE–SW-trending basement ridges along a bowed portion of the Sørøya-Ingøya shear zone in the Middle to Late Devonian–early Carboniferous. Exhumation may have involved part of a large-scale metamorphic core complex that potentially included the Lofoten Ridge, the West Troms Basement Complex and the Norsel High. Finally, we argue that the Sørøya–Ingøya shear zone truncated and decapitated the Trollfjorden–Komagelva Fault Zone during the Caledonian Orogeny and that the western continuation of the Trollfjorden–Komagelva Fault Zone was mostly eroded and potentially partly preserved in basement highs in the SW Barents Sea.


2021 ◽  
Vol 7 ◽  
pp. 40-53
Author(s):  
T.N. Surin

The relevance of the work is caused by necessary regional analysis of magmatic evolution of the East Magnitogorsk belt and refnement of ideas on geodynamics of the South Urals. The geology and petrochemical-mineralogical features of the Sakhara dunite-clinopyroxenite-gabbro complex in the South Urals are characterized in the paper. Its late Frasnian age is substantiated. The composition of olivine, clinopyroxene and chromite in rocks of the complex are determined. The restite nature of dunites is proved. It is shown that rocks of the complex are similar to those of the Urals platinum belt and belong to Ural-Alaskan type. It is concluded that the complex formed in island-arc geodynamic setting and in the beginning of the formation of a mature island arc. The location of massifs of the complex is an additional argument in favor of a western dip (in the present-day coordinates) of a subduction paleozone at the moment of its formation. Crystallization diferentiation was a leading mechanism of petrogenesis of rocks of the complex.


2000 ◽  
Vol 171 (3) ◽  
pp. 295-307 ◽  
Author(s):  
Jean-Yves Roig ◽  
Michel Faure

Abstract Structural, kinematics and thermo-barometric analyses of the ductile deformation of the south-Limousin metamorphic formations show a polyphase shear tectonics corresponding to two different thrusting events. The older one, is a to the top-to-the-SW thrusting during middle Devonian. This deformation occurs under minimum PT conditions of 7 Kbar/700 degrees C simultaneously to anatexis. The second event is a top-to-the-NW shearing which occurred in late Devonian-early Carboniferous under Barrovian conditions (5 kbar/600 degrees C). Diorites bodies and non-eclogitized mafic rocks allow us to argue for an extensional phase between the two thrusting events. These two ductile and syn-metamorphic deformations take place in a polycyclic evolution model of the Hercynian belt of the French Massif Central.


2021 ◽  
Vol 12 (2) ◽  
pp. 350-364
Author(s):  
T. A. Osipova ◽  
G. A. Kallistov ◽  
D. A. Zamyatin ◽  
V. A. Bulatov

Zr-Th-U minerals, namely baddeleyite, zircon and U-Th-oxide, were found in high-Mg diorite from the Late Devonian – Early Carboniferous synplutonic dyke in granodiorites of the Chelyabinsk massif, South Urals. Micron-sized minerals were investigated by electron microscopy and cathodoluminescence spectroscopy. Their chemical compositions were determined by electron probe microanalysis that was optimized to ensure more precise measurements of the composition of minerals. Baddeleyite grains are found as inclusions in amphibole crystals and reside in intergranular areas. The former retain their composition and show no traces of corrosion or substitution. In the intergranular areas, baddeleyite grains were replaced by polycrystalline zircon due to the reaction with an acid melt, and the U-Th-oxide precipitated inside baddeleyite simultaneously, which suggests the restite origin of baddeleyite. The main features of the baddeleyite composition are extremely high concentrations of ThO2 and UO2 (to 0.03 wt. % and 1.0 wt. %, respectively), which may be due to the metasomatic interaction between the mantle peridotite and the crustal or carbonatite fluid or melt.


2004 ◽  
Vol 41 (8) ◽  
pp. 987-996 ◽  
Author(s):  
P H Reynolds ◽  
S M Barr ◽  
C E White ◽  
P J Ténière

40Ar/39Ar dating of whole-rock samples and muscovite separates using age spectrum analysis, and of single muscovite grains using total fusion analysis, yields new insights into the timing of regional metamorphism and sediment provenance in the Late Devonian – Early Carboniferous Horton Group in the Lochaber–Mulgrave area of Nova Scotia. The time of regional metamorphism is constrained to ca. 340–335 Ma by whole-rock spectra from well-cleaved slate and shale samples from the lowermost Clam Harbour River and overlying Tracadie Road formations of the Horton Group. This ca. 340–335 Ma event may have been the result of burial and deformation of the Horton Group by older volcanic and sedimentary rocks of the Guysborough Group, which were overthrust from the south as the result of development of a positive flower structure at a restraining bend along the Cobequid–Chedabucto fault system, the boundary between the Meguma and Avalon terranes. Detrital muscovite ages of ca. 410–380 and ca. 500 Ma were obtained from single-grain analysis and from spectral analysis of separated grains. Whole-rock spectra for two samples from a mylonitic metasedimentary unit in the Cape Porcupine Complex yielded plateau ages of 364 ± 4 and 367 ± 4 Ma, providing a likely source for ca. 370–360 Ma detrital muscovite, ages that may be reflected in some of the age spectrum data. However, the Meguma terrane to the south is the most likely source for most of the detrital muscovite.


Sign in / Sign up

Export Citation Format

Share Document