scholarly journals Correlation-based and feature-driven mutation signature analyses to identify genetic features associated with DNA mutagenic processes in cancer genomes

2021 ◽  
Vol 19 (4) ◽  
pp. e40
Author(s):  
Hye Young Jeong ◽  
Jinseon Yoo ◽  
Hyunwoo Kim ◽  
Tae-Min Kim

Mutation signatures represent unique sequence footprints of somatic mutations resulting from specific DNA mutagenic and repair processes. However, their causal associations and the potential utility for genome research remain largely unknown. In this study, we performed PanCancer-scale correlative analyses to identify the genomic features associated with tumor mutation burdens (TMB) and individual mutation signatures. We observed that TMB was correlated with tumor purity, ploidy, and the level of aneuploidy, as well as with the expression of cell proliferation-related genes representing genomic covariates in evaluating TMB. Correlative analyses of mutation signature levels with genes belonging to specific DNA damage-repair processes revealed that deficiencies of NHEJ1 and ALKBH3 may contribute to mutations in the settings of APOBEC cytidine deaminase activation and DNA mismatch repair deficiency, respectively. We further employed a strategy to identify feature-driven, de novo mutation signatures and demonstrated that mutation signatures can be reconstructed using known causal features. Using the strategy, we further identified tumor hypoxia-related mutation signatures similar to the APOBEC-related mutation signatures, suggesting that APOBEC activity mediates hypoxia-related mutational consequences in cancer genomes. Our study advances the mechanistic insights into the TMB and signature-based DNA mutagenic and repair processes in cancer genomes. We also propose that feature-driven mutation signature analysis can further extend the categories of cancer-relevant mutation signatures and their causal relationships.

2016 ◽  
Vol 113 (18) ◽  
pp. E2498-E2505 ◽  
Author(s):  
Hongan Long ◽  
Samuel F. Miller ◽  
Chloe Strauss ◽  
Chaoxian Zhao ◽  
Lei Cheng ◽  
...  

Although it is well known that microbial populations can respond adaptively to challenges from antibiotics, empirical difficulties in distinguishing the roles of de novo mutation and natural selection have left several issues unresolved. Here, we explore the mutational properties ofEscherichia coliexposed to long-term sublethal levels of the antibiotic norfloxacin, using a mutation accumulation design combined with whole-genome sequencing of replicate lines. The genome-wide mutation rate significantly increases with norfloxacin concentration. This response is associated with enhanced expression of error-prone DNA polymerases and may also involve indirect effects of norfloxacin on DNA mismatch and oxidative-damage repair. Moreover, we find that acquisition of antibiotic resistance can be enhanced solely by accelerated mutagenesis, i.e., without direct involvement of selection. Our results suggest that antibiotics may generally enhance the mutation rates of target cells, thereby accelerating the rate of adaptation not only to the antibiotic itself but to additional challenges faced by invasive pathogens.


2020 ◽  
Author(s):  
Hye Young Jeong ◽  
Jinseon Yoo ◽  
Hyunwoo Kim ◽  
Tae-Min Kim

AbstractMutation signatures represent unique sequence footprints of somatic mutations resulting from specific DNA mutagenic and repair processes; however, their causal associations and potential utility for genome research remain largely unknown. In this study, we performed PanCancer-scale correlative analyses to identify the genomic features associated with tumor mutation burdens (TMB) and individual mutation signatures. We observed that TMB was correlated with tumor purity, ploidy, and the level of aneuploidy, as well as with the expression of cell proliferation-related genes representing genomic covariates in evaluating TMB. Correlative analyses of mutation signature levels with genes belonging to DNA damage-repair processes revealed that deficiencies of NHEJ1 and ALKBH3 may elevate TMB levels in cancer genomes accompanying APOBEC overactivity and DNA mismatch repair deficiency, respectively. We further employed a strategy to identify feature-driven, de novo mutation signatures and demonstrated they can be reconstructed using known causal features such as APOBEC overexpression, MLH1 underexpression, POLE mutations, and the level of homologous recombination deficiency. We further demonstrated, that tumor hypoxia-related mutation signatures are similar to those associated with APOBEC suggesting that APOBEC-related mutagenic activity mediates hypoxia-related mutational consequences in cancer genomes, and also, that mutation signatures can be further used to predict hypoxic tumors. Taken together, our study advances mutation signature-level mechanistic insights in cancer genomes, extending categories of cancer-relevant mutation signatures and their potential biological implications.Author summaryMutation signature analysis is powerful in deciphering the causative mutagenic events and their contributions in individual cancer genomes, but the causal relationship of individual mutation signatures are still largely unknown. PanCancer-scaled correlative analysis revealed mutation resource candidates in cancer genomes such as NHEJ1 and ALKBH3 deficiencies that may facilitate the accumulation of mutations in the setting of APOBEC overactivity and DNA mismatch repair deficiency, respectively. A feature-driven mutation discovery approach was employed to identify the mutation signatures representing homologous recombination deficiency and tumor hypoxia, the extent of which may serve as mutation-based phenotypic measures, previously estimated by DNA copy number alterations and mRNA expression signatures, respectively. Our study advances our understanding into the mechanistic insights of mutation signatures and proposes a method to utilize somatic mutations as a molecular proxy in terms of mutation signatures.


2017 ◽  
Author(s):  
Jakob M. Goldmann ◽  
Vladimir B. Seplyarskiy ◽  
Wendy S.W. Wong ◽  
Thierry Vilboux ◽  
Dale L. Bodian ◽  
...  

Clustering of mutations has been found both in somatic mutations from cancer genomes and in germline de novo mutations (DNMs). We identified 1,755 clustered DNMs (cDNMs) within whole-genome sequencing data from 1,291 parent-offspring trios and investigated the underlying mutational mechanisms. We found that the number of clusters on the maternalallele was positively correlated with maternal age and that these consist of more individual mutations with larger intra-mutational distances compared to paternal clusters. More than 50% of maternal clusters were located on chromosomes 8, 9 and 16, in regions with an overall increased maternal mutation rate. Maternal clusters in these regions showed a distinct mutation signature characterized by C>G mutations. Finally, we found that maternal clusters associate with processes involving double-stranded-breaks (DSBs) such as meiotic gene conversions and de novo deletions events. These findings suggest accumulation of DSB-induced mutations throughout oocyte aging as an underlying mechanism leading to maternal mutation clusters.


2019 ◽  
Author(s):  
Jie Li ◽  
Hongfen Wang ◽  
Zizi He ◽  
Xiangqing Wang ◽  
Jing Tang ◽  
...  

Abstract Background Adrenoleukodystrophy is a rare neurogenetic disease, AMN is the most common adult phenotype, such patients in China have not gotten enough attention.This article aims to study the features of AMN in Chinese patients and expand the gene spectrum of Chinese X-linked adrenoleukodystrophy (X-ALD) patients. Methods We applied clinical analysis, radiology, plasma levels of very long chain fatty acids (VLCFA) and genetic analysis to test the 6 Chinese AMN patients. Results All 6 patients are men. Ages of neurological symptom onset are distributed between 21 and 38. Sexual dysfunction occurred in 5 of 6 patients. Three patients had positive family history. Five patients had Addison's disease. Four patients were diagnosed as pure AMN, while the other two patients were with cerebral involvement. Four patients had abnormalities of nerve conduction studies. There were four patients with central conduction defects in somatosensory evoked potential tests. All 6 patients were found diffuse cord atrophy in spinal MRI. Brain MRI showed abnormal signals in 2 of the 6 tested patients, which indicated the clinical phenotypes. Plasma levels of VLCFA, as well as C24:0/C22:0 and C26:0/C22:0 ratios were elevated in 5 tested patients. Five different ABCD1 mutations were identified in 5 tested patients, one of which was a de novo mutation, and the other four have been reported previously. Conclusion This research described the clinical, neuroimaging, biochemical, and genetic sides of Chinese AMN patients. A de novo mutation in the ABCD1 gene sequence was identified. Emotional trauma may trigger or aggravate the development of cerebral demyelination in AMN patients. Regular evaluation of brain MRI is important for AMN patients, especially for ‘pure AMN’ patients. When encountering patients with ‘myeloneuropathy-only’, neurologists should not ignore the tests of VLCFA or/and the ABCD1 gene.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zehong Lin ◽  
Jinliang Li ◽  
Taoyun Ji ◽  
Ye Wu ◽  
Kai Gao ◽  
...  

Background:ATP1A1 encodes an α1 isoform of Na+/K+-ATPase, which is expressed abundantly in kidneys and central nervous system. ATP1A1 variants may cause Na+/K+-ATPase loss of function and lead to a wide spectrum of phenotypes. This study aims to summarize the clinical and genetic features of ATP1A1 de novo mutation-related disorders and explore the potential correlations between phenotypes and genotypes.Methods: We analyzed two new cases harboring novel de novo ATP1A1 variants and reviewed all reported cases.Results: Both our probands had developmental delay, patient 1 accompanied with sleep disorders, irritability, and patient 2 with refractory seizures. They each had a novel de novo heterozygous missense variant, c.2797G>A[p.Asp933Asn] (NM_000701) and c.2590G>A[p.Gly864Arg] (NM_000701) respectively. Four patients with de novo ATP1A1 variants have been reported in two previous papers. Among them, three patients had refractory seizures and one patient had complex hereditary spastic paraplegia (HSP). Therefore, all six patients had developmental delay, and four of them had epilepsy. All variants located in the transmembrane regions M3, M4, M7, and M8 of ATP1A1 protein. Four patients with mutations in M3 and M7 had more severe phenotypes, including developmental delay and epileptic encephalopathy, three of them with hypomagnesemia, whereas two patients with mutations in M4 and M8 had milder phenotypes, only with mild developmental delay, without seizures or hypomagnesemia. Correcting hypomagnesemia had not controlled those seizures.Conclusions: Two novel de novo ATP1A1 variants identified in two patients here enriched the genotypic and phenotypic spectrum of ATP1A1 mutation-related disorder. Our findings suggest that hypomagnesemia in this disorder might relate to more severe phenotype and indicate more severe Na+/K+-ATPase dysfunction. Variations in M3 and M7 transmembrane regions were related to more severe phenotype than those in M4 and M8, which suggested that variations in M3 and M7 might cause more severe ATP1A1 functional defect.


BMC Neurology ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jie Li ◽  
Hongfen Wang ◽  
Zizi He ◽  
Xiangqing Wang ◽  
Jing Tang ◽  
...  

Abstract Background Adrenoleukodystrophy is a rare neurogenetic disease, AMN is the most common adult phenotype, such patients in China have not gotten enough attention. This article aims to study the features of AMN in Chinese patients and expand the gene spectrum of Chinese X-linked adrenoleukodystrophy (X-ALD) patients. Methods We applied clinical analysis, radiology, plasma levels of very long chain fatty acids (VLCFA) and genetic analysis to test the 6 Chinese AMN patients. Results All 6 patients are men. Ages of neurological symptom onset are distributed between 21 and 38. Sexual dysfunction occurred in 5 of 6 patients. Three patients had positive family history. Five patients had Addison’s disease. Four patients were diagnosed as pure AMN, while the other two patients were with cerebral involvement. Four patients had abnormalities of nerve conduction studies. There were four patients with central conduction defects in somatosensory evoked potential tests. All 6 patients were found diffuse cord atrophy in spinal MRI. Brain MRI showed abnormal signals in 2 of the 6 tested patients, which indicated the clinical phenotypes. Plasma levels of VLCFA, as well as C24:0/C22:0 and C26:0/C22:0 ratios were elevated in 5 tested patients. Five different ABCD1 mutations were identified in 5 tested patients, one of which was a de novo mutation, and the other four have been reported previously. Conclusion This research described the clinical, neuroimaging, biochemical, and genetic sides of Chinese AMN patients. A de novo mutation in the ABCD1 gene sequence was identified. Emotional trauma may trigger or aggravate the development of cerebral demyelination in AMN patients. Regular evaluation of brain MRI is important for AMN patients, especially for ‘pure AMN’ patients. When encountering patients with ‘myeloneuropathy-only’, neurologists should not ignore the tests of VLCFA or/and the ABCD1 gene.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kohei Kitagawa ◽  
Kensuke Matsumura ◽  
Masayuki Baba ◽  
Momoka Kondo ◽  
Tomoya Takemoto ◽  
...  

AbstractAutism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder characterized by core symptoms of impaired social behavior and communication. Recent studies have suggested that the oxytocin system, which regulates social behavior in mammals, is potentially involved in ASD. Mouse models of ASD provide a useful system for understanding the associations between an impaired oxytocin system and social behavior deficits. However, limited studies have shown the involvement of the oxytocin system in the behavioral phenotypes in mouse models of ASD. We have previously demonstrated that a mouse model that carries the ASD patient-derived de novo mutation in the pogo transposable element derived with zinc finger domain (POGZWT/Q1038R mice), showed ASD-like social behavioral deficits. Here, we have explored whether oxytocin (OXT) administration improves impaired social behavior in POGZWT/Q1038R mice and found that intranasal oxytocin administration effectively restored the impaired social behavior in POGZWT/Q1038R mice. We also found that the expression level of the oxytocin receptor gene (OXTR) was low in POGZWT/Q1038R mice. However, we did not detect significant changes in the number of OXT-expressing neurons between the paraventricular nucleus of POGZWT/Q1038R mice and that of WT mice. A chromatin immunoprecipitation assay revealed that POGZ binds to the promoter region of OXTR and is involved in the transcriptional regulation of OXTR. In summary, our study demonstrate that the pathogenic mutation in the POGZ, a high-confidence ASD gene, impairs the oxytocin system and social behavior in mice, providing insights into the development of oxytocin-based therapeutics for ASD.


2021 ◽  
Vol 48 (3) ◽  
pp. 2775-2789
Author(s):  
Ludwig Stenz

AbstractThe 300 bp dimeric repeats digestible by AluI were discovered in 1979. Since then, Alu were involved in the most fundamental epigenetic mechanisms, namely reprogramming, pluripotency, imprinting and mosaicism. These Alu encode a family of retrotransposons transcribed by the RNA Pol III machinery, notably when the cytosines that constitute their sequences are de-methylated. Then, Alu hijack the functions of ORF2 encoded by another transposons named L1 during reverse transcription and integration into new sites. That mechanism functions as a complex genetic parasite able to copy-paste Alu sequences. Doing that, Alu have modified even the size of the human genome, as well as of other primate genomes, during 65 million years of co-evolution. Actually, one germline retro-transposition still occurs each 20 births. Thus, Alu continue to modify our human genome nowadays and were implicated in de novo mutation causing diseases including deletions, duplications and rearrangements. Most recently, retrotransposons were found to trigger neuronal diversity by inducing mosaicism in the brain. Finally, boosted during viral infections, Alu clearly interact with the innate immune system. The purpose of that review is to give a condensed overview of all these major findings that concern the fascinating physiology of Alu from their discovery up to the current knowledge.


2021 ◽  
Author(s):  
Jakob M. Goldmann ◽  
Vladimir B. Seplyarskiy ◽  
Wendy S. W. Wong ◽  
Thierry Vilboux ◽  
Pieter B. Neerincx ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document