Evaluation of lytB Gene for Detection of Streptococcus pneumoniae in Isolates and Clinical Specimens by Real-Time PCR

2017 ◽  
Vol 10 (6) ◽  
Author(s):  
Mohammad Azarsa ◽  
Seyed Alireza Salami ◽  
Mohammad Reza Pourmand ◽  
Abbas Rahimi Forushani ◽  
Hamid Kazemian
2020 ◽  
Vol 18 ◽  
Author(s):  
Pegah Shakib ◽  
Mohammad Reza Zolfaghari

Background: Conventional laboratory culture-based methods for diagnosis of Streptococcus pneumoniae are time-consuming and yield false negative results. Molecular methods including real-time (RT)-PCR rapid methods and conventional PCR due to higher sensitivity and accuracy have been replaced instead traditional culture assay. The aim of the current study was to evaluate lytA gene for detection of Streptococcus pneumoniae in the cerebrospinal fluid of human patients with meningitis using real-time PCR assay. Material and Methods: In this cross-sectional study, a total of 30 clinical specimens were collected from patients in a period from September to December 2018. In order to evaluate the presence of lytA gene, conventional and real-time PCR methods were used without culture. Results: From 30 sputum samples five (16.66%) isolates were identified as S. pneumoniae by lytA PCR and sequencing. Discussion: In this research, an accurate and rapid real-time PCR method was used, which is based on lytA gene for diagnosis of bacteria so that it can be diagnosed. Based on the sequencing results, the sensitivity for detection of lytA gene was 100% (5/5).


2018 ◽  
Vol 36 (7) ◽  
pp. 428-430 ◽  
Author(s):  
Juan Carlos Sanz ◽  
Esther Ríos ◽  
Iciar Rodríguez-Avial ◽  
Belén Ramos ◽  
Mercedes Marín ◽  
...  

2011 ◽  
Vol 10 (60) ◽  
pp. 12826-12832 ◽  
Author(s):  
Nomanpour Bizhan ◽  
Ghodousi Arash ◽  
Babaei Toraj ◽  
AliJavad Mousavi Seyd ◽  
Asadi Soroor ◽  
...  

2018 ◽  
Vol 56 (8) ◽  
Author(s):  
Nawal El Houmami ◽  
Guillaume André Durand ◽  
Janek Bzdrenga ◽  
Anne Darmon ◽  
Philippe Minodier ◽  
...  

ABSTRACTKingella kingaeis a significant pediatric pathogen responsible for bone and joint infections, occult bacteremia, and endocarditis in early childhood. Past efforts to detect this bacterium using culture and broad-range 16S rRNA gene PCR assays from clinical specimens have proven unsatisfactory; therefore, by the late 2000s, these were gradually phased out to explore the benefits of specific real-time PCR tests targeting thegroELgene and the RTX locus ofK. kingae. However, recent studies showed that real-time PCR (RT-PCR) assays targeting theKingellasp. RTX locus that are currently available for the diagnosis ofK. kingaeinfection lack specificity because they could not distinguish betweenK. kingaeand the recently describedKingella negevensisspecies. Furthermore,in silicoanalysis of thegroELgene from a large collection of 45K. kingaestrains showed that primers and probes fromK. kingaegroEL-based RT-PCR assays display a few mismatches withK. kingae groELvariations that may result in decreased detection sensitivity, especially in paucibacillary clinical specimens. In order to provide an alternative togroEL- and RTX-targeting RT-PCR assays that may suffer from suboptimal specificity and sensitivity, aK. kingae-specific RT-PCR assay targeting the malate dehydrogenase (mdh) gene was developed for predicting no mismatch between primers and probe and 18 variants of theK. kingae mdhgene from 20 distinct sequence types ofK. kingae. This novelK. kingae-specific RT-PCR assay demonstrated high specificity and sensitivity and was successfully used to diagnoseK. kingaeinfections and carriage in 104 clinical specimens from children between 7 months and 7 years old.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Cyril C. Y. Yip ◽  
Siddharth Sridhar ◽  
Kit-Hang Leung ◽  
Andrew K. W. Cheng ◽  
Kwok-Hung Chan ◽  
...  

Several commercial PCR kits are available for detection of herpes simplex virus (HSV) and varicella zoster virus (VZV), but the test performance of one CE-marked in vitro diagnostic kit—RealStar® alpha Herpesvirus PCR Kit—has not been well studied. This study evaluated the performance of RealStar® alpha Herpesvirus PCR Kit 1.0 on the LightCycler® 480 Instrument II for detection and differentiation of HSV-1, HSV-2, and VZV in human clinical specimens. We evaluated the analytical sensitivity of the RealStar® and in-house multiplex real-time PCR assays using serial dilutions of nucleic acids extracted from clinical specimens. The analytical sensitivity of the RealStar® assay was 10, 32, and 100 copies/reaction for HSV-1, HSV-2, and VZV, respectively, which was slightly higher than that of the in-house multiplex real-time PCR assay. Reproducibility of the cycle threshold (Cp) values for each viral target was satisfactory with the intra- and interassay coefficient of variation values below 5% for both assays. One-hundred and fifty-three clinical specimens and 15 proficiency testing samples were used to evaluate the diagnostic performance of RealStar® alpha Herpesvirus PCR Kit against the in-house multiplex real-time PCR assay. The RealStar® assay showed 100% sensitivity and specificity when compared to the in-house assay. Cp values of the RealStar® and in-house assays showed excellent correlation. RealStar® alpha Herpesvirus PCR is a sensitive, specific, and reliable assay for the detection of HSV-1, HSV-2, and VZV, with less extensive verification requirements compared to a laboratory developed assay.


Diagnostics ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 58 ◽  
Author(s):  
Melissa Whaley ◽  
Laurel Jenkins ◽  
Fang Hu ◽  
Alexander Chen ◽  
Seydou Diarra ◽  
...  

Detection of Neisseria meningitidis has become less time- and resource-intensive with a monoplex direct real-time PCR (drt-PCR) to amplify genes from clinical specimens without DNA extraction. To further improve efficiency, we evaluated two triplex drt-PCR assays for the detection of meningococcal serogroups AWX and BCY. The sensitivity and specificity of the triplex assays were assessed using 228 cerebrospinal fluid (CSF) specimens from meningitis patients and compared to the monoplex for six serogroups. The lower limit of detection range for six serogroup-specific drt-PCR assays was 178–5264 CFU/mL by monoplex and 68–2221 CFU/mL by triplex. The triplex and monoplex showed 100% agreement for six serogroups and the triplex assays achieved similar sensitivity and specificity estimates as the monoplex drt-PCR assays. Our triplex method reduces the time and cost of processing CSF specimens by characterizing six serogroups with only two assays, which is particularly important for testing large numbers of specimens for N. meningitidis surveillance.


2018 ◽  
Vol 71 (9) ◽  
pp. 774-780 ◽  
Author(s):  
Jeong-Uk Kim ◽  
Dae-Shick Ryu ◽  
Choong-Hwan Cha ◽  
Seon-Hee Park

AimsMycobacterium tuberculosis and non-tuberculous mycobacteria (NTM) are clinically different, and the rapid detection and differentiation of M. tuberculosis complex (MTBC) and NTM is crucial for patient management and infection control. Given the slow growth of most pathogenic mycobacteria, nucleic acid amplification assays are excellent tools for direct identification of mycobacteria in clinical specimens. Recently, a multiplex real-time PCR assay was developed that can directly detect 20 mycobacterial species in clinical specimens. Here, we evaluated the diagnostic performance of the assay for diagnosing mycobacterial disease under routine laboratory conditions.MethodsA total of 3334 specimens collected from 1437 patients suspected of tuberculosis infection were subjected to acid-fast bacilli staining, conventional culture and the multiplex real-time PCR assay. To evaluate the sensitivity and specificity of the assay, the overall diagnosis of tuberculosis was defined by positive culture plus medical history, and the 2007 American Thoracic Society and Infectious Disease Society of America diagnostic criteria for NTM disease were applied.ResultsThe sensitivity, specificity, positive predictive value and negative predictive value were 87.5%, 99.6%, 96.1% and 98.5%, respectively, for the detection of MTBC isolates and 53.3%, 99.9%, 95.2%, and 98.9%, respectively, for detecting NTM isolates.ConclusionsThus, the assay can correctly differentiate between MTBC and NTM isolates in clinical specimens and would be a useful tool for the rapid differentiation of tuberculosis and NTM disease, despite its limited sensitivity for the diagnosis of NTM disease.


2012 ◽  
Vol 32 (6) ◽  
pp. 399-406 ◽  
Author(s):  
Insoo Rheem ◽  
Joowon Park ◽  
Tae-Hyun Kim ◽  
Jong Wan Kim

Sign in / Sign up

Export Citation Format

Share Document