scholarly journals Multi Duty Cycle Scheduled Routing in Wireless Sensor Network-lifetime Maximization

Author(s):  
Patil Yogita Dattatraya ◽  
◽  
Jayashree Agarkhed ◽  
Siddarama Patil

Cluster-based protocols are best for applications that require reliability and a continuous functioning environment with a sustainable lifetime of WSN. The dynamic nature of the sensor node makes energy conservation a challenging issue. Sensor node scheduled based on sensing error for energy conservation compromise the accuracy of prediction. The high data accuracy achieved using a single duty cycle controller at each node with compromised throughput and increased routing overhead. Duty Cycle Controller managing a great number of control messages at the network level leads to control packet interference with data packet transmission, increasing packet drop and minimizing throughput. Also, the single-duty cycle controller at the network level leads to increased control overhead. The proposed multilevel cluster-based approach focuses on the appropriate cluster design, selection of cluster head, and sensor nodes scheduling based on sensing error. The proposed method applies a multi-duty cycle controller at each cluster level, and control messages handled are related to nodes in a cluster. Thus has less interference and packet drop leading to maximum throughput than existing methods. The simulation results demonstrated that the proposed method with sensor nodes scheduled at individual cluster levels using a multi-duty cycle controller exhibited improved network lifetime, throughput, and reduced energy consumption compared with the state-of-the-art techniques.

Author(s):  
Sandeep Kaur ◽  
Dr. Rajeev Bedi ◽  
Mohit Marwaha

In WSNs, the only source to save life for the node is the battery consumption. During communication with other area nodes or sensing activities consumes a lot of power energy in processing the data and transmitting the collected/selected data to the sink. In wireless sensor networks, energy conservation is directly to the network lifetime and energy plays an important role in the cluster head selection. A new threshold has been formulated for cluster head selection, which is based on remaining energy of the sensor node and the distance from the base station. Proposed approach selects the cluster head nearer to base station having maximum remaining energy than any other sensor node in multi-hop communication. The multi hop approach minimizing the inter cluster communication without effecting the data reliability.


Author(s):  
S. JERUSHA ◽  
K. KULOTHUNGAN ◽  
A Kannan

Wireless sensor nodes are usually embedded in the physical environment and report sensed data to a central base station. Clustering is one of the most challenging issues in wireless sensor networks. This paper proposes a new cluster scheme for wireless sensor network by modified the K means clustering algorithm. Sensor nodes are deployed in a harsh environment and randomly scattered in the region of interest and are deployed in a flat architecture. The transmission of packet will reduce the network lifetime. Thus, clustering scheme is required to avoid network traffic and increase overall network lifetime. In order to cluster the sensor nodes that are deployed in the sensor network, the location information of each sensor node should be known. By knowing the location of the each sensor node in the wireless sensor network, clustering is formed based on the highest residual energy and minimum distance from the base station. Among the group of nodes, one node is elected as a cluster head using centroid method. The minimum distance between the cluster node’s and the centroid point is elected as a cluster head. Clustering of nodes can minimize the residual energy and maximize the network performance. This improves the overall network lifetime and reduces network traffic.


2020 ◽  
Vol 18 (2) ◽  
pp. 143-149
Author(s):  
Sathyapriya Loganathan ◽  
Jawahar Arumugam

This paper aims to discuss a comprehensive survey on clustering algorithms for wireless sensor networks (WSN). The several real-time applications adopted the WSN with the advance features. But the capacity and size of the battery used in the sensor nodes are limited. Battery replacement or recharging is very difficult in most outdoor applications. Hence handling this kind of network is one of the issues. One of the best solutions to the energy issue is Clustering. Clustering is to balance the energy consumption of the whole network by cluster-based architecture to prolong the network lifetime. Sensor nodes grouped into clusters; one sensor node selects as the cluster head for each cluster. The cluster head sensor node collects the data from their sensor member nodes and forwards them to the sink node. In cluster-based architecture, cluster formation and the selection of the cluster head node decides the network lifetime. The paper discusses the for and against various clustering algorithms. It suggests the vital parameters for developing energy-efficient clustering algorithms and steps to overcome the limitations.


Author(s):  
Raden Sumiharto ◽  
Rosyidatul Ilma ◽  
Rif’Atunnisa Rif’Atunnisa

Wireless Sensor Network (WSN) is a wireless network consisting of a group of nodes scattered in a certain area. Each node has the ability to gather data around it and communicate with other nodes. In WSN, energy efficiency is important to maintain the lifetime of a network. A WSN consisting of several clusters and having a Cluster Head (CH) in each cluster requires a CH change mechanism in each cluster so that the network lifetime is longer.The LEACH algorithm is implemented on a system consisting of 9 sensor nodes and 1 sink node. Each sensor node monitors the temperature and humidity of the surrounding air. System testing is done by varying the number of data snippets per CH selection process in each LEACH cycle. Based on the results of testing, the application of the LEACH algorithm can increase network lifetime. The LEACH algorithm with 70 data snippets is an optimal state that results in a network lifetime of 7,387 seconds, whereas with the same number of data snippets when using a non-LEACH algorithm the network lifetime can only reach 5,565 seconds. 


2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Palak Aggarwal ◽  
Santosh Kumar ◽  
Neha Garg ◽  
Sumeshwar Singh

Energy and security are very important issues in Wireless Sensor Networks (WSN) which need to be handled. These issues are interrelated because of limited energy there are some restrictions on implementation of security. Insider packet drop attack is one of the dangerous attacks for wireless sensor network that causes a heavy damage to WSN functionalities by dropping packets. It becomes necessary to identify such attack for secure routing of data in WSN. To detect this attack, trust mechanism has been proven as a successful technique. In this mechanism, each node verifies the trustworthiness of its neighbor node before packet transmission so that packets can only be transmitted to trustworthy nodes. But there is a problem of False Alarm with such trust-aware scheme. False alarm occurs when a good node’s trust value goes down due to natural packet dropping and being eliminated from the routing paths. This wastes network’s resources that further shortens network lifetime. In this paper, we have proposed a system for identification and recovery of false alarms (IRFA) which is the optimization of existing trust based system. But security solution needs to be energy efficient due to scarcity of energy resources in WSN. To provide energy efficiency, we have implemented proposed IRFA system in cluster based environment which detects insider packet drop attackers in an energy efficient manner. We have conducted OMNET++ simulation and results demonstrate that the proposed system performance is better than existing trust-based system in terms of packet delivery rate and energy efficiency which improves network lifetime.


Author(s):  
C. R. Bharathi ◽  
Alapati Naresh ◽  
Arepalli Peda Gopi ◽  
Lakshman Narayana Vejendla

In wireless sensor networks (WSN), the majority of the inquiries are issued at the base station. WSN applications frequently require collaboration among countless sensor nodes in a network. One precedent is to persistently screen a region and report occasions. A sensor node in a WSN is initially allocated with an energy level, and based on the tasks of that sensor node, energy will be reduced. In this chapter, two proposed methods for secure network cluster formation and authentication are discussed. When a network is established then all the nodes in it must register with cluster head and then authentication is performed. The selection of cluster head is done using a novel selection algorithm and for authenticating the nodes. Also, a novel algorithm for authentication is used in this chapter. The validation and authorization of nodes are carried over by managing the keys in WSN. The results have been analyzed using NS2 simulator with an aid of list of relevant parameters.


Author(s):  
Vrajesh Kumar Chawra ◽  
Govind P. Gupta

The formation of the unequal clusters of the sensor nodes is a burning research issue in wireless sensor networks (WSN). Energy-hole and non-uniform load assignment are two major issues in most of the existing node clustering schemes. This affects the network lifetime of WSN. Salp optimization-based algorithm is used to solve these problems. The proposed algorithm is used for cluster head selection. The performance of the proposed scheme is compared with the two-node clustering scheme in the term of residual energy, energy consumption, and network lifetime. The results show the proposed scheme outperforms the existing protocols in term of network lifetime under different network configurations.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Baniata ◽  
Jiman Hong

The recent advances in sensing and communication technologies such as wireless sensor networks (WSN) have enabled low-priced distributed monitoring systems that are the foundation of smart cities. These advances are also helping to monitor smart cities and making our living environments workable. However, sensor nodes are constrained in energy supply if they have no constant power supply. Moreover, communication links can be easily failed because of unequal node energy depletion. The energy constraints and link failures affect the performance and quality of the sensor network. Therefore, designing a routing protocol that minimizes energy consumption and maximizes the network lifetime should be considered in the design of the routing protocol for WSN. In this paper, we propose an Energy-Efficient Unequal Chain Length Clustering (EEUCLC) protocol which has a suboptimal multihop routing algorithm to reduce the burden on the cluster head and a probability-based cluster head selection algorithm to prolong the network lifetime. Simulation results show that the EEUCLC mechanism enhanced the energy balance and prolonged the network lifetime compared to other related protocols.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 829
Author(s):  
Muhammad Faizan Ullah ◽  
Junaid Imtiaz ◽  
Khawaja Maqbool

Recently, different routing techniques were proposed for three layer clustering topology in Wireless Sensor Network (WSN) which outperform the basic two layer clustering hierarchy. The problem that remains in these approaches is the heavy control packet exchange between nodes after every round in order to choose efficient lower layer heads. Among these techniques is Hybrid Hierarchical Clustering Approach (HHCA), in which a distributed approach is proposed. According to HHCA, the upper layer heads are centrally selected by base station, while sensor nodes only have to select lower layer heads distributively. In this paper, enhanced three layer hybrid clustering mechanism is proposed that limits the exchange of control packets between nodes after every round for lower layer head selection. The energy of nodes are divided into levels upon which it is decided when nodes of a cluster need to enter into new cluster head selection phase. The proposed mechanism helps to limit control packet exchange between nodes to a large extent, at the same time keeping energy consumption between nodes balanced. Moreover, it is focused that higher layer heads are selected by base station in a manner that reduces backward transmission in the network as much as possible. Simulation results show that nodes in the proposed mechanism stay alive for a longer time as compared to other approaches, and it outperforms HHCA technique in network lifetime based on Half of the Nodes Alive (HNA) by 18 percent.


2020 ◽  
Vol 10 (21) ◽  
pp. 7886
Author(s):  
Atefeh Rahiminasab ◽  
Peyman Tirandazi ◽  
M. J. Ebadi ◽  
Ali Ahmadian ◽  
Mehdi Salimi

Wireless sensor networks (WSNs) include several sensor nodes that have limited capabilities. The most critical restriction in WSNs is energy resources. Moreover, since each sensor node’s energy resources cannot be recharged or replaced, it is inevitable to propose various methods for managing the energy resources. Furthermore, this procedure increases the network lifetime. In wireless sensor networks, the cluster head has a significant impact on system global scalability, energy efficiency, and lifetime. Furthermore, the cluster head is most important in combining, aggregating, and transferring data that are received from other cluster nodes. One of the substantial challenges in a cluster-based network is to choose a suitable cluster head. In this paper, to select an appropriate cluster head, we first model this problem by using multi-factor decision-making according to the four factors, including energy, mobility, distance to centre, and the length of data queues. Then, we use the Cluster Splitting Process (CSP) algorithm and the Analytical Hierarchy Process (AHP) method in order to provide a new method to solve this problem. These four factors are examined in our proposed approach, and our method is compared with the Base station Controlled Dynamic Clustering Protocol (BCDCP) algorithm. The simulation results show the proposed method in improving the network lifetime has better performance than the base station controlled dynamic clustering protocol algorithm. In our proposed method, the energy reduction is almost 5% more than the BCDCP method, and the packet loss rate in our proposed method is almost 25% lower than in the BCDCP method.


Sign in / Sign up

Export Citation Format

Share Document