scholarly journals Optimization of Energy Efficient Advance Leach Protocol

Author(s):  
Sandeep Kaur ◽  
Dr. Rajeev Bedi ◽  
Mohit Marwaha

In WSNs, the only source to save life for the node is the battery consumption. During communication with other area nodes or sensing activities consumes a lot of power energy in processing the data and transmitting the collected/selected data to the sink. In wireless sensor networks, energy conservation is directly to the network lifetime and energy plays an important role in the cluster head selection. A new threshold has been formulated for cluster head selection, which is based on remaining energy of the sensor node and the distance from the base station. Proposed approach selects the cluster head nearer to base station having maximum remaining energy than any other sensor node in multi-hop communication. The multi hop approach minimizing the inter cluster communication without effecting the data reliability.

2014 ◽  
Vol 626 ◽  
pp. 20-25
Author(s):  
K. Kalaiselvi ◽  
G.R. Suresh

In wireless sensor networks Energy-efficient routing is an important issue due to the limited battery power within the network, Energy consumption is one of the important performance factors. Specifically for the election of cluster head selection and distance between the cluster head node and base station. The main objective of this proposed system is to reduce the energy consumption and prolong the network lifetime. This paper introduces a new clustering algorithm for energy efficient routing based on a cluster head selection


Author(s):  
S. JERUSHA ◽  
K. KULOTHUNGAN ◽  
A Kannan

Wireless sensor nodes are usually embedded in the physical environment and report sensed data to a central base station. Clustering is one of the most challenging issues in wireless sensor networks. This paper proposes a new cluster scheme for wireless sensor network by modified the K means clustering algorithm. Sensor nodes are deployed in a harsh environment and randomly scattered in the region of interest and are deployed in a flat architecture. The transmission of packet will reduce the network lifetime. Thus, clustering scheme is required to avoid network traffic and increase overall network lifetime. In order to cluster the sensor nodes that are deployed in the sensor network, the location information of each sensor node should be known. By knowing the location of the each sensor node in the wireless sensor network, clustering is formed based on the highest residual energy and minimum distance from the base station. Among the group of nodes, one node is elected as a cluster head using centroid method. The minimum distance between the cluster node’s and the centroid point is elected as a cluster head. Clustering of nodes can minimize the residual energy and maximize the network performance. This improves the overall network lifetime and reduces network traffic.


2021 ◽  
Vol 20 (3) ◽  
pp. 161-166
Author(s):  
Asma Mesmoudi ◽  
Samira Mesmoudi ◽  
Zakarya Houari ◽  
Khelifa Mostefa

Wireless sensor networks have recently gained a lot of attention from the scientific community due to their very wide spectrum of applications. In such networks, the sensor nodes have limited resources. These constraints impose many challenges to the design of related protocols. Especially, routing protocols should be energy-efficient for the prolonged network lifetime. The LEACH protocol is the most popular energy-efficient hierarchical clustering protocol for WSNs that was proposed for reducing power consumption. However, LEACH suffers from several drawbacks such as the non uniform distribution of Cluster Head nodes, the possibility of choosing a low energy node as Cluster Head, etc. In this paper, an attempt is made to overcome this shortcoming by introducing a new hierarchical clustering protocol, called SCHP (Static Cluster-based Hierarchical Protocol). The SCHP protocol is based on a static cluster creation and an optimal cluster head selection. Simulation results show that the proposal guarantees better performance than the LEACH Protocol that is considered as the baseline in the literature. We used many metrics, as packet loss rate, end-to-end delay, and energy consumption to evaluate the efficiency of our proposal. We show also that the SCHP protocol can improve the network lifetime.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8445
Author(s):  
Syed Kamran Haider ◽  
Aimin Jiang ◽  
Ahmad Almogren ◽  
Ateeq Ur Rehman ◽  
Abbas Ahmed ◽  
...  

Wireless sensor networks (WSNs) are one of the fundamental infrastructures for Internet of Things (IoTs) technology. Efficient energy consumption is one of the greatest challenges in WSNs because of its resource-constrained sensor nodes (SNs). Clustering techniques can significantly help resolve this issue and extend the network’s lifespan. In clustering, WSN is divided into various clusters, and a cluster head (CH) is selected in each cluster. The selection of appropriate CHs highly influences the clustering technique, and poor cluster structures lead toward the early death of WSNs. In this paper, we propose an energy-efficient clustering and cluster head selection technique for next-generation wireless sensor networks (NG-WSNs). The proposed clustering approach is based on the midpoint technique, considering residual energy and distance among nodes. It distributes the sensors uniformly creating balanced clusters, and uses multihop communication for distant CHs to the base station (BS). We consider a four-layer hierarchical network composed of SNs, CHs, unmanned aerial vehicle (UAV), and BS. The UAV brings the advantage of flexibility and mobility; it shortens the communication range of sensors, which leads to an extended lifetime. Finally, a simulated annealing algorithm is applied for the optimal trajectory of the UAV according to the ground sensor network. The experimental results show that the proposed approach outperforms with respect to energy efficiency and network lifetime when compared with state-of-the-art techniques from recent literature.


Author(s):  
C. R. Bharathi ◽  
Alapati Naresh ◽  
Arepalli Peda Gopi ◽  
Lakshman Narayana Vejendla

In wireless sensor networks (WSN), the majority of the inquiries are issued at the base station. WSN applications frequently require collaboration among countless sensor nodes in a network. One precedent is to persistently screen a region and report occasions. A sensor node in a WSN is initially allocated with an energy level, and based on the tasks of that sensor node, energy will be reduced. In this chapter, two proposed methods for secure network cluster formation and authentication are discussed. When a network is established then all the nodes in it must register with cluster head and then authentication is performed. The selection of cluster head is done using a novel selection algorithm and for authenticating the nodes. Also, a novel algorithm for authentication is used in this chapter. The validation and authorization of nodes are carried over by managing the keys in WSN. The results have been analyzed using NS2 simulator with an aid of list of relevant parameters.


Author(s):  
Sardjoeni Moedjiono ◽  
Aries Kusdaryono

Preserving energy of sensor node in wireless sensor network is an effort to prolong the lifetime of network. Energy of sensor node is very crucial because battery powered and irreplaceable. Energy conservation of sensor node is an effort to reduce energy consumption in order to preserve resource for network lifetime. It can be achieved through efficient energy usage by reducing consumption of energy or decrease energy usage while achieving a similar outcome. In this paper, the authors propose power layer energy efficient routing protocol in wireless sensor network, named PLRP, which use power control and multi-hop routing protocol to control overhead of sensor node and create clustering to distribute energy dissipation and increase energy efficiency of all sensor node. The main idea of PLRP is the use of power control, which divide sensor node into group by base station uses layer of energy and maximize the computation energy in base station to reduce computational energy in sensor node for conservation of network lifetime. The performance of PLRP compared to BCDCP and BIDRP based of hierarchical routing protocol. The simulation results show that PLRP achieve 25% and 30% of improvement on network lifetime.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1835 ◽  
Author(s):  
Ruan ◽  
Huang

Since wireless sensor networks (WSNs) are powered by energy-constrained batteries, many energy-efficient routing protocols have been proposed to extend the network lifetime. However, most of the protocols do not well balance the energy consumption of the WSNs. The hotspot problem caused by unbalanced energy consumption in the WSNs reduces the network lifetime. To solve the problem, this paper proposes a PSO (Particle Swarm Optimization)-based uneven dynamic clustering multi-hop routing protocol (PUDCRP). In the PUDCRP protocol, the distribution of the clusters will change dynamically when some nodes fail. The PSO algorithm is used to determine the area where the candidate CH (cluster head) nodes are located. The adaptive clustering method based on node distribution makes the cluster distribution more reasonable, which balances the energy consumption of the network more effectively. In order to improve the energy efficiency of multi-hop transmission between the BS (Base Station) and CH nodes, we also propose a connecting line aided route construction method to determine the most appropriate next hop. Compared with UCCGRA, multi-hop EEBCDA, EEMRP, CAMP, PSO-ECHS and PSO-SD, PUDCRP prolongs the network lifetime by between 7.36% and 74.21%. The protocol significantly balances the energy consumption of the network and has better scalability for various sizes of network.


Sign in / Sign up

Export Citation Format

Share Document