Phytosociological evaluation of terrestrial habitat types in Pyramiden area (Svalbard, Norway)

2014 ◽  
Vol 4 (2) ◽  
pp. 193-211
Author(s):  
Natalia Koroleva

Natural habitats in the area of Pyramiden town (Svalbard, Norway) were assessed as a part of landscape planning for purposes of tourism development. Habitat types evalu-ation was done by using phytosociological units and assessed by IUCN categories. Altogether, 15 main habitat types were united in following groups: 1. Arctic tundra, 2. Barrens, screes, young alluvia areas and glaciers, 4. Wetlands and marshes, 5. Meadows and grasslands, 6. Anthropogenic open plant communities.

Diversity ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Francesco Liccari ◽  
Maurizia Sigura ◽  
Enrico Tordoni ◽  
Francesco Boscutti ◽  
Giovanni Bacaro

In intensively used and human-modified landscapes, biodiversity is often confined to remnants of natural habitats. Thus, identifying ecological networks (ENs) necessary to connect these patches and maintain high levels of biodiversity, not only for conservation but also for the effective management of the landscape, is required. However, ENs are often defined without a clear a-priori evaluation of their biodiversity and are seldom even monitored after their establishment. The objective of this study was to determine the adequate number of replicates to effectively characterize biodiversity content of natural habitats within the nodes of an EN in north-eastern Italy, based on vascular plant diversity. Plant communities within habitat types of the EN’s nodes were sampled through a hierarchical sampling design, evaluating both species richness and compositional dissimilarity. We developed an integrated method, consisting of multivariate measures of precision (MultSE), rarefaction curves and diversity partitioning approaches, which was applied to estimate the minimum number of replicates needed to characterize plant communities within the EN, evaluating also how the proposed optimization in sampling size affected the estimations of the characteristics of habitat types and nodes of the EN. We observed that reducing the total sampled replicates by 85.5% resulted to sufficiently characterize plant diversity of the whole EN, and by 72.5% to exhaustively distinguish plant communities among habitat types. This integrated method helped to fill the gap regarding the data collection to monitor biodiversity content within existing ENs, considering temporal and economic resources. We therefore suggest the use of this quantitative approach, based on probabilistic sampling, to conduct pilot studies in the context of ENs design and monitoring, and in general for habitat monitoring.


2020 ◽  
Vol 54 (2) ◽  
pp. 497-513 ◽  
Author(s):  
L. N. Beldiman ◽  
I. N. Urbanavichene ◽  
V. E. Fedosov ◽  
E. Yu. Kuzmina

We studied in detail a moss-lichen component of Shokalsky Island vegetation for the first time and identified 79 species of mosses and 54 species and 2 subspecies of lichens and lichenicolous fungi. All species of mosses and 23 species and 2 subspecies of lichens and lichenicolous fungi are recorded for the first time for the island. The study is based on collections made in South West part of the island, in arctic tundra. We also explored the participation of the mosses and lichens in the main types of plant communities and the species distribution in 10 ecotopes. The paper describes the noteworthy findings (Abrothallus parmeliarum, Aongstroemia longipes, Arthonia peltigerea, Caloplaca caesiorufella, Catillaria stereocaulorum, Ceratodon heterophyllus, Lecanora leptacinella, Sphagnum concinnum, S. olafii) and features of bryo- and lichenoflora of Shokalsky Island.


1991 ◽  
Vol 10 (2) ◽  
pp. 85-92 ◽  
Author(s):  
H. Bezuidenhout

The aim of this study was to identify, characterize and interpret ecologically, by using habitat characteristics, the major vege­tation units and their variations of the Ba land type. Six plant communities were successfully distinguished through applying a numerical classification (TWINSPAN) and Braun-Blanquet procedures. The plant communities could easily be correlated with specific habitat types. A clear distinction could be made between plant communities of the upland and lowland areas. Vegetation gradients and associated gradients in habitat were identified by using an ordination technique (DECORANA). The studv emphasized the importance of topography and soil type for the delimitation of management units for farming or nature conservation practices.


1991 ◽  
Vol 10 (1) ◽  
pp. 4-10
Author(s):  
H. Bezuidenhout

The aim of this study was to identify, characterize and interpret ecologically, by using habitat characteristics, the major vege­tation units and their variations of the A land type. Five plant communities were successfully distinguished by applying a numerical classification and Braun-Blanquet procedures. The plant communities could easily be correlated with specific habitat types. A clear distinction could be made between plant communities of the upland and lowland areas. Vegetation gradients and associated gradients in habitat were identified by using an ordination technique. The study emphasized the importance of topography and soil type for the delimitation of management units for farming or nature conservation practices.


Bothalia ◽  
1989 ◽  
Vol 19 (1) ◽  
pp. 69-89 ◽  
Author(s):  
G. B. Deall ◽  
G. K. Theron ◽  
R. H. Westfall

The indigenous vegetation of the Eastern Transvaal Escarpment in the Sabie area is classified with the aid of the PHYTOTAB program package. Four ecological-formation classes (efc) based on floristics. physiognomy and climate correspond to four data subsets. Plant communities in each efc are defined by means of 46 differential species-groups distributed amongst forest, thicket, woodland, shrubland and grassland structural types. Environmental correlation is facilitated by means of 21 habitat types.


2019 ◽  
Vol 12 (1) ◽  
pp. 204 ◽  
Author(s):  
Yang Cao ◽  
Yosihiro Natuhara

Riparian areas are local hot spots of biodiversity that are vulnerable and easily degraded. Comparing plant communities in habitats with different degrees of urbanization may provide valuable information for the management and restoration of these vulnerable habitats. In this study, we explored the impact of urbanization on vegetation communities between artificial and semi-natural habitats within two rivers with different levels of development. We compared species richness, types of vegetation, and composition patterns of the plants in our study. In artificial habitats, the sites with relatively high levels of urbanization had the highest species richness, while in semi-natural habitats, the highest species richness was recorded in the less urbanized sites. Furthermore, every component of urbanization that contributed to the variation of species richness was examined in the current study. In artificial habitats, the proportion of impervious surface was the strongest predictor of the variation in species richness and was associated with the richness of alien, native, and riparian species. In semi-natural habitats, most of the richness of alien and native species were associated with the distance to the city center, and the number of riparian and ruderal species was significantly related to the proportion of impervious surface. Moreover, we found that a high level of urbanization was always associated with a large abundance of alien and ruderal species in both artificial and in semi-natural habitats. We recommend the methods of pair comparison of multiple rivers to analyze the impact of urbanization on plant species in riparian areas and have suggested various management actions for maintaining biodiversity and sustainability in riparian ecosystems.


2004 ◽  
Vol 10 (8) ◽  
pp. 1325-1334 ◽  
Author(s):  
Howard E. Epstein ◽  
Monika P. Calef ◽  
Marilyn D. Walker ◽  
F. Stuart Chapin ◽  
Anthony M. Starfield

1999 ◽  
Vol 10 (3) ◽  
pp. 413-420 ◽  
Author(s):  
Christoph Wüthrich ◽  
Ingo Möller ◽  
Dietbert Thannheiser

Arctoa ◽  
2014 ◽  
Vol 23 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Natalia E. Koroleva ◽  
Evgeny A. Borovichev

Sign in / Sign up

Export Citation Format

Share Document