scholarly journals Effects of the sea water environmental factors on zooplankton community nearshore of the Yalu River estuary in winter

2022 ◽  
Vol 42 (1) ◽  
Author(s):  
张广帅,吴婷婷,闫吉顺,孙家文,蔡悦荫,赵全民,于永海,宫玮 ZHANG Guangshuai
Author(s):  
Raveesha P ◽  
K. E. Prakash ◽  
B. T. Suresh Babu

The salt water mixes with fresh water and forms brackish water. The brackish water contains some quantity of salt, but not equal to sea water. Salinity determines the geographic distribution of the number of marshes found in estuary. Hence salinity is a very important environmental factor in estuary system. Sand is one major natural aggregate, required in construction industry mainly for the manufacture of concrete. The availability of good river sand is reduced due to salinity. The quality of sand available from estuarine regions is adversely affected due to this reason. It is the responsibility of engineers to check the quality of sand and its strength parameters before using it for any construction purpose. Presence of salt content in natural aggregates or manufactured aggregates is the cause for corrosion in steel. In this study the amount of salinity present in estuary sand was determined. Three different methods were used to determine the salinity in different seasonal variations. The sand sample collected nearer to the sea was found to be high in salinity in all methods.  It can be concluded that care should be taken before we use estuary sand as a construction material due to the presence of salinity.


2010 ◽  
Vol 30 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Jiasheng LI ◽  
Jianhua GAO ◽  
Jun LI ◽  
Zhenyan WANG ◽  
Jie YAN ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 317
Author(s):  
Wanli Hou ◽  
Menglin Ba ◽  
Jie Bai ◽  
Jianghua Yu

In view of the expansion and directional change mechanisms of Yangtze River water diluted with sea water in the shelf region (also known as Changjiang diluted water [CDW]) during summer and autumn, a three-dimensional hydrodynamic model of the Yangtze River Estuary (YRE) and its adjacent waters was established based on the Finite Volume Community Ocean Model (FVCOM). Compared with the measured data, the model accurately simulates the hydrodynamic characteristics of the YRE. On that basis, the influence of the expansion patterns of the CDW in both summer and autumn was studied. It was found that, in 2019, the CDW expanded to the northeast in the summer and to the southeast in the autumn, and that the route of the CDW is mainly controlled by the wind, not the runoff. Current seasonal winds also change the transportation route of the CDW by affecting its hydrodynamic field. Typhoons are frequent in both summer and autumn, causing abnormalities in both the transportation route and expansion of the CDW. During a typhoon, a large amount of the CDW is transported in a continuous and abnormal manner, accelerating the path turning of the CDW. This paper enhances the existing theoretical research of the CDW and provides a reference with respect to the expansion of diluted water all over the world.


2013 ◽  
Vol 290 ◽  
pp. 1227-1235 ◽  
Author(s):  
Yue Liu ◽  
Yan Cheng ◽  
Huixiang Li ◽  
Jingwei Liu ◽  
Chunpeng Zhang ◽  
...  

2017 ◽  
Vol 35 (4) ◽  
pp. 631-639 ◽  
Author(s):  
Eun Hye Lee ◽  
Min Ho Seo ◽  
Yang-Ho Yoon ◽  
Sang-Duk Choi ◽  
Ho Young Soh

2011 ◽  
Vol 8 (3) ◽  
pp. 703-713 ◽  
Author(s):  
A. Stubbins ◽  
C. S. Law ◽  
G. Uher ◽  
R. C. Upstill-Goddard

Abstract. Carbon monoxide (CO) apparent quantum yields (AQYs) are reported for a suite of riverine, estuarine and sea water samples, spanning a range of coloured dissolved organic matter (CDOM) sources, diagenetic histories, and concentrations (absorption coefficients). CO AQYs were highest for high CDOM riverine samples and almost an order of magnitude lower for low CDOM coastal seawater samples. CO AQYs were between 47 and 80% lower at the mouth of the estuary than at its head. Whereas, a conservative mixing model predicted only 8 to 14% decreases in CO AQYs between the head and mouth of the estuary, indicating that a highly photoreactive pool of terrestrial CDOM is lost during estuarine transit. The CDOM absorption coefficient (a) at 412 nm was identified as a good proxy for CO AQYs (linear regression r2 > 0.8; n = 12) at all CO AQY wavelengths studied (285, 295, 305, 325, 345, 365, and 423 nm) and across environments (high CDOM river, low CDOM river, estuary and coastal sea). These regressions are presented as empirical proxies suitable for the remote sensing of CO AQYs in natural waters, including open ocean water, and were used to estimate CO AQY spectra and CO photoproduction in the Tyne estuary based upon annually averaged estuarine CDOM absorption data. A minimum estimate of annual CO production was determined assuming that only light absorbed by CDOM leads to the formation of CO and a maximum limit was estimated assuming that all light entering the water column is absorbed by CO producing photoreactants (i.e. that particles are also photoreactive). In this way, annual CO photoproduction in the Tyne was estimated to be between 0.99 and 3.57 metric tons of carbon per year, or 0.004 to 0.014% of riverine dissolved organic carbon (DOC) inputs to the estuary. Extrapolation of CO photoproduction rates to estimate total DOC photomineralisation indicate that less than 1% of DOC inputs are removed via photochemical processes during transit through the Tyne estuary.


Author(s):  
Somia Hamil ◽  
Djaouida Bouchelouche ◽  
Siham Arab ◽  
Malika Alili ◽  
Mounia Baha ◽  
...  

2011 ◽  
Vol 8 (4) ◽  
pp. 841-850 ◽  
Author(s):  
S. Shang ◽  
Q. Dong ◽  
Z. Lee ◽  
Y. Li ◽  
Y. Xie ◽  
...  

Abstract. This study used MODIS observed phytoplankton absorption coefficient at 443 nm (Aph) as a preferable index to characterize phytoplankton variability in optically complex waters. Aph derived from remote sensing reflectance (Rrs, both in situ and MODIS measured) with the Quasi-Analytical Algorithm (QAA) were evaluated by comparing them with match-up in situ measurements, collected in both oceanic and nearshore waters in the Taiwan Strait (TWS). For the data with matching spatial and temporal window, it was found that the average percentage error (ε) between MODIS derived Aph and field measured Aph was 33.8% (N=30, Aph ranges from 0.012 to 0.537 m−1), with a root mean square error in log space (RMSE_log) of 0.226. By comparison, ε was 28.0% (N=88, RMSE_log = 0.150) between Aph derived from ship-borne Rrs and Aph measured from water samples. However, values of ε as large as 135.6% (N=30, RMSE_log = 0.383) were found between MODIS derived chlorophyll-a (Chl, OC3M algorithm) and field measured Chl. Based on these evaluation results, we applied QAA to MODIS Rrs data in the period of 2003–2009 to derive climatological monthly mean Aph for the TWS. Three distinct features of phytoplankton dynamics were identified. First, Aph is low and the least variable in the Penghu Channel, where the South China Sea water enters the TWS. This region maintains slightly higher values in winter (~17% higher than that in the other seasons) due to surface nutrient entrainment under winter wind-driven vertical mixing. Second, Aph is high and varies the most in the mainland nearshore water, with values peaking in summer (June–August) when river plumes and coastal upwelling enhance surface nutrient loads. Interannual variation of bloom intensity in Hanjiang River estuary in June is highly correlated with alongshore wind stress anomalies, as observed by QuikSCAT. The year of minimum and maximum bloom intensity is in the midst of an El Niño and a La Niña event, respectively. Third, a high Aph patch appears between April and September in the middle of the southern TWS, corresponding to high thermal frontal probabilities, as observed by MODIS. Our results support the use of satellite derived Aph for time series analyses of phytoplankton dynamics in coastal ocean regions, whereas satellite Chl products derived empirically using spectral ratio of Rrs suffer from artifacts associated with non-biotic optically active materials.


2017 ◽  
Vol 37 (4) ◽  
Author(s):  
姜会超 JIANG Huichao ◽  
刘宁 LIU Ning ◽  
高继庆 GAO Jiqing ◽  
苏博 SU Bo ◽  
李佳蕙 LI Jiahui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document