scholarly journals In Vitro Immune-Enhancing Activity of Ovotransferrin from Egg White via MAPK Signaling Pathways in RAW 264.7 Macrophages

2018 ◽  
Vol 38 (6) ◽  
pp. 1226-1236 ◽  
Author(s):  
Jae Hoon Lee ◽  
Dong Uk Ahn ◽  
Hyun-Dong Paik
2016 ◽  
Vol 7 (2) ◽  
pp. 1002-1013 ◽  
Author(s):  
Weicheng Hu ◽  
Xinfeng Wang ◽  
Lei Wu ◽  
Ting Shen ◽  
Lilian Ji ◽  
...  

In vitro and in vivo anti-inflammatory activities of apigenin-7-O-β-d-glucuronide.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Yunjia Yu ◽  
Yang Zhang ◽  
Shuyao Wang ◽  
Wei Liu ◽  
Cui Hao ◽  
...  

Abstract Background Patchouli alcohol (PA) is a tricyclic sesquiterpene extracted from Pogostemonis Herba, which is a traditional Chinese medicine used for therapy of inflammatory diseases. Recent studies have shown that PA has various pharmacological activities, including anti-bacterial and anti-viral effects. Methods In this study, the anti-influenza virus (IAV) activities and mechanisms were investigated both in vitro and in vivo. The inhibitory effects of PA against IAV in vitro were evaluated by plaque assay and immunofluorescence assay. The neuraminidase inhibition assay, hemagglutination inhibition (HI) assay, and western blot assay were used to explore the anti-viral mechanisms. The anti-IAV activities in vivo were determined by mice pneumonia model and HE staining. Results The results showed that PA significantly inhibited different IAV strains multiplication in vitro, and may block IAV infection through inactivating virus particles directly and interfering with some early stages after virus adsorption. Cellular PI3K/Akt and ERK/MAPK signaling pathways may be involved in the anti-IAV actions of PA. Intranasal administration of PA markedly improved mice survival and attenuated pneumonia symptoms in IAV infected mice, comparable to the effects of Oseltamivir. Conclusions Therefore, Patchouli alcohol has the potential to be developed into a novel anti-IAV agent in the future.


2018 ◽  
Vol 19 (7) ◽  
pp. 2027 ◽  
Author(s):  
Jingyu He ◽  
Xianyuan Lu ◽  
Ting Wei ◽  
Yaqian Dong ◽  
Zheng Cai ◽  
...  

Hedyotis diffusa is a folk herb that is used for treating inflammation-related diseases in Asia. Previous studies have found that iridoids in H. diffusa play an important role in its anti-inflammatory activity. This study aimed to investigate the anti-inflammatory effect and potential mechanism of five iridoids (asperuloside (ASP), asperulosidic acid (ASPA), desacetyl asperulosidic acid (DAA), scandoside methyl ester (SME), and E-6-O-p-coumaroyl scandoside methyl ester (CSME)) that are presented in H. diffusa using lipopolysaccharide (LPS)—induced RAW 264.7 cells. ASP and ASPA significantly decreased the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in parallel with the inhibition of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, and IL-6 mRNA expression in LPS-induced RAW 264.7 cells. ASP treatment suppressed the phosphorylation of the inhibitors of nuclear factor-kappaB alpha (IκB-α), p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). The inhibitory effect of ASPA was similar to that of ASP, except for p38 phosphorylation. In summary, the anti-inflammatory effects of ASP and ASPA are related to the inhibition of inflammatory cytokines and mediators via suppression of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways, which provides scientific evidence for the potential application of H. diffusa.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Mei Jing ◽  
Yuqiang Wang ◽  
Lipeng Xu

Trinitrobenzenesulfonic acid (TNBS) and dextran sodium sulfate (DSS) are commonly used to induce experimental murine ulcerative colitis (UC). Our recent study has demonstrated that a novel andrographolide derivative, AL-1, ameliorated TNBS-induced colitis in mice. However, the effect of AL-1 on DSS-induced murine colitis and the underlying mechanisms are yet unknown. In the present study, we aimed to investigate the therapeutic potential of AL-1 against DSS-induced UC in mice and to define its mechanisms of action. Oral administration of AL-1 attenuated body weight loss, reduced colon length shortening, lowered the disease activity index score, and alleviated colon histological damage. AL-1 significantly inhibited myeloperoxidase activity and suppressed immune inflammatory responses in colonic tissues. Moreover, AL-1 reversed DSS-altered expression of inflammatory cytokines in DSS-induced colitis mice. Importantly, the efficacy of 45 mg/kg of AL-1 was higher than that of 100 mg/kg of the positive control drugs 5-aminosalicylic acid and mesalazine. AL-1 decreased lipopolysaccharide-induced generation of reactive oxygen species and nitric oxide in cultured macrophages in vitro; it also reversed the altered expression of inflammatory cytokines. In both in vivo and in vitro studies, Western blot analysis revealed that AL-1 reduced the expression of phosphorylated NF-κB p65 and IκBα, downregulated the expression of iNOS and COX-2, and attenuated the expression of phosphorylated p38 mitogen-activated protein kinase (MAPK), ERK, and JNK. In conclusion, AL-1 alleviated DSS-induced murine colitis by inhibiting activation of the NF-κB and MAPK signaling pathways. Our data suggest that AL-1 could be a potential new treatment for UC.


Sign in / Sign up

Export Citation Format

Share Document