Utilization of hydrogen gas production for electricity generation in fuel cell by Enterobacter aerogenes ADH 43 with many kinds of carbon sources in batch stirred tank reactor

2012 ◽  
Vol 11 (36) ◽  
Author(s):  
M. A. Rachman
AIChE Journal ◽  
2004 ◽  
Vol 50 (8) ◽  
pp. 1889-1900 ◽  
Author(s):  
Jay Benziger ◽  
E. Chia ◽  
E. Karnas ◽  
J. Moxley ◽  
C. Teuscher ◽  
...  

2018 ◽  
Vol 67 ◽  
pp. 02030 ◽  
Author(s):  
Dijan Supramono ◽  
Justin Edgar ◽  
Setiadi ◽  
Mohammad Nasikin

Bio-diesel was synthesized by hydrogenating the non-polar fraction of the bio-oil produced from the co-pyrolysis between corncobs and polypropylene. Co-pyrolysis of corn cobs and polypropylene was conducted in a stirred tank reactor at heating rate of 5°C/min and maximum temperature of 500°C to attain synergetic effect in non-polar fraction yield where polypropylene served as a hydrogen donor and oxygen sequester so that the oxygenate content in the biofuel product reduced. Stirred tank reactor configuration allowed phase separation between non-polar and polar (oxygenate) compounds in the bio-oil. Hydrogenation reaction of the separated non-polar phase, which contained alkenes, was carried out in a pressured stirred tank reactor using a NiMo/C catalyst in order to reduce the alkene content in the bio-oil. The aim of the present work is to reduce the alkene content in the separated non-polar fraction of bio-oil by catalytic hydrogenation to obtain biofuel with low alkene content and viscosity approaching to that of diesel fuel. To quantify effect of the pressure on the alkene composition, the experiment was done at H2 initial pressures of 4, 7, 10, and 13 bar and at corresponding saturation temperatures of octane. The biofuel products were characterized using GC-MS, LC-MS, FTIR spectroscopy, H-NMR, Higher heating values (HHV) and viscometer for comparison with those of commercial diesel fuel. Analysis of the lower molecular weight fractions of biofuels by GC-MS found that the hydrogenation reactor at pressures at 4 and 7 bar produced biofuels with predominant hydrocarbon contents of cycloalkanes and alkanes, while that at 10 and 13 bar produced biofuels with predominant contents of alkanes and alkenes. In comparison, diesel fuel contains mostly alkanes and aromatics. However, analysis over the whole content of bio-oil by H-NMR found that different pressures of reactor hydrogenation did not reduce alkene compositions in biofuels appreciably from alkene composition in bio-oil feed. In comparison, diesel fuel contained mostly alkanes with aromatic composition about 4% and no alkene content. Various data suggest that alkene content in the biofuels be reduced to approach their viscosity to that of diesel fuel. Modification of the hydrogenation reactor is required by improving convective momentum of hydrogen gas into the bio-oil to enhance contact of solid catalyst, hydrogen gas and bio-oil.


2019 ◽  
Vol 6 (1) ◽  
pp. 21
Author(s):  
Iwan Hidayat ◽  
Mahyudin A.R. ◽  
Srikandi Srikandi

Enhancement of Hydrogen Gas Production Capacity (H2) With Substrate of Biodiesel Waste By Double Multiles Enterobacter aerogenes Ad-H43 In Batch Stirred Tank Reactor (Bstr)Hydrogen is the simplest element consisting of only one proton and one electron. Almost all components inside the cell contain hydrogen atoms. Hydrogen gas (H2) consists of two binding hydrogen atoms. H2 can be producted by chemical / physics method and biological method. The production of H2 by chemical / physics method is done thermochemically and electrolyzed water, while biologically done by microorganisms through direct and indirect biofotolysis as well as light and dark fermentation. The results showed that H2 production using a double Enterobacter aerogenes AD-H43 mutant on the BSTR fermentor scale occurred an increase in H2 capacity followed by decreased production of lactic acid due to mutation with Ethyl Methane Sulfonate (EMS). On the glycerol substrate E. aerogenes AD-H43 produces H2 of 3.14 mol / mol glycerol while E. aerogenes AY-2 produces only H2 of 2.65 mol / mol glycerol, or an increase of 18% compared to E. aerogenes AY-2 whereas for production lactic acid decreased 33% while in biodiesel waste E. aerogenes AD-H43 yield H2 0.98 mol / mol glycerol and E. aerogenes AY-2 only 0.85 mol / mol glycerol or about 15% increase and in purified biodiesel waste resulting in a higher yield of H2 from biodiesel waste of 0.89 mol / mol glycerol at E. aerogenes AY-2 and 0.98 mol / mol glycerol in E. aerogenes AD-H43.Keywords: Hydrogen, Enterobacter aerogenes, BSTR fermentorABSTRAKHidrogen adalah unsur paling sederhana yang hanya terdiri dari satu proton dan satu elektron.  Hampir semua komponen di dalam sel mengandung atom hidrogen.  Gas hidrogen (H2) terdiri atas dua atom hidrogen yang berikatan.  Pembuatan H2 dapat dilakukan dengan metode kimia/fisika dan metode biologis.  Produksi H2 dengan metode kimia/fisika dilakukan secara termokimia dan elektrolisis air, sedangkan secara biologis dilakukan oleh mikroorganisme melalui biofotolisis langsung dan tidak langsung serta fermentasi terang dan gelap. Hasil penelitian menunjukkan bahwa produksi H2 menggunakan mutan ganda Enterobacter aerogenes AD-H43 pada skala fermentor BSTR terjadi peningkatan kapasitas H2 dengan diikuti penurunan produksi asam laktat akibat mutasi dengan Ethyl Methane Sulfonate (EMS). Pada substrat gliserol E. aerogenes AD-H43 memproduksi H2 sebesar 3.14 mol/mol gliserol sedangkan E. aerogenes AY-2 hanya  memproduksi H2 sebesar 2.65 mol/mol gliserol,atau mengalami kenaikan sebesar 18 % dibandingkan E. aerogenes AY-2 sedangkan untuk produksi asam laktatnya terjadi penurunan 33% sedangkan pada limbah biodiesel E. aerogenes AD- H43 menghasilkan  yield H2 0.98 mol/mol gliserol dan E. aerogenes AY-2 hanya 0.85 mol/mol gliserol atau terjadi kenaikan sekitar 15 % dan pada limbah biodiesel yang di purifikasi menghasilkan yield H2 yang lebih tinggi dari limbah biodiesel yaitu 0.89 mol/mol gliserol pada E. aerogenes AY-2 dan 0.98 mol/mol gliserol  pada E. aerogenes AD-H43. Kata Kunci: Hidrogen, Enterobacter aerogenes, fermentor BSTR


1979 ◽  
Vol 44 (7) ◽  
pp. 2184-2195
Author(s):  
Vladimír Herles ◽  
Jan Čermák ◽  
Antonín Havlíček

The paper deals with the analysis of the dynamic behavior of the 1st order system with two random parameters. The theoretical results have been compared with experiments on flow model of a stirred tank reactor.


Sign in / Sign up

Export Citation Format

Share Document