scholarly journals Screening of tree seedling survival rate under field condition in Tanqua Abergelle and Weri-Leke Weredas, Tigray, Ethiopia

2020 ◽  
Vol 12 (1) ◽  
pp. 20-26
Author(s):  
Abrha Gebrekidan ◽  
Hintsa Sbhatleab ◽  
Gebremedhin Gebrekiros
Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1381
Author(s):  
Danilo Simões ◽  
Jean Fernando Silva Gil ◽  
Richardson Barbosa Gomes da Silva ◽  
Rafaele Almeida Munis ◽  
Magali Ribeiro da Silva

Background: Experts in ecological restoration have discussed the cost reduction to make forest restoration financially feasible. This is very important in developing countries, such as Brazil, and for smallholder farmers; however, economic studies do not usually consider the uncertainties in their analysis. Therefore, this study aimed to analyze, under conditions of uncertainty, how tropical tree seedlings produced in polyethylene bags, polyethylene tubes, and biodegradable containers (Ellepot®) interfere with the costs of implementation and post-planting maintenance investment projects in a deforested tropical seasonal forest area in southern Brazil. Methods: We evaluated total costs, production costs, and equivalent annual uniform costs, and the probability distributions and estimated ranges of stochastic values were adjusted through Monte Carlo method simulation. Furthermore, the seedling survival rate was recorded over 12 months post-planting. Results: The costs with tree seedling acquisition and direct labor were the components that most impacted total costs in the three investment projects. The forest restoration investment project with tree seedlings produced in polyethylene bags was economically unfeasible in relation to other projects. Conclusions: The best economic alternative was observed in the investment project with tree seedlings produced in Ellepot®, which showed a survival rate >80% after one year and the lowest total cost, production cost, and equivalent uniform annual cost.


Data in Brief ◽  
2021 ◽  
pp. 107073
Author(s):  
Christine Magaju ◽  
Leigh Ann Winowiecki ◽  
Pietro Bartolini ◽  
Asma Jeitani ◽  
Ibrahim Ochenje ◽  
...  

2019 ◽  
Vol 35 (2) ◽  
pp. 74-82 ◽  
Author(s):  
Hamza Issifu ◽  
George K. D. Ametsitsi ◽  
Lana J. de Vries ◽  
Gloria Djaney Djagbletey ◽  
Stephen Adu-Bredu ◽  
...  

AbstractDifferential tree seedling recruitment across forest-savanna ecotones is poorly understood, but hypothesized to be influenced by vegetation cover and associated factors. In a 3-y-long field transplant experiment in the forest-savanna ecotone of Ghana, we assessed performance and root allocation of 864 seedlings for two forest (Khaya ivorensis and Terminalia superba) and two savanna (Khaya senegalensis and Terminalia macroptera) species in savanna woodland, closed-woodland and forest. Herbaceous vegetation biomass was significantly higher in savanna woodland (1.0 ± 0.4 kg m−2 vs 0.2 ± 0.1 kg m−2 in forest) and hence expected fire intensities, while some soil properties were improved in forest. Regardless, seedling survival declined significantly in the first-year dry-season for all species with huge declines for the forest species (50% vs 6% for Khaya and 16% vs 2% for Terminalia) by year 2. After 3 y, only savanna species survived in savanna woodland. However, best performance for savanna Khaya was in forest, but in savanna woodland for savanna Terminalia which also had the highest biomass fraction (0.8 ± 0.1 g g−1 vs 0.6 ± 0.1 g g−1 and 0.4 ± 0.1 g g−1) and starch concentration (27% ± 10% vs 15% ± 7% and 10% ± 4%) in roots relative to savanna and forest Khaya respectively. Our results demonstrate that tree cover variation has species-specific effects on tree seedling recruitment which is related to root storage functions.


2020 ◽  
Vol 270 ◽  
pp. 110900
Author(s):  
Rony Marcos Almeida Benites ◽  
Angélica Guerra ◽  
Letícia Koutchin Reis ◽  
Bruno Henrique dos Santos Ferreira ◽  
Felipe Luis Gomes Borges ◽  
...  

Ecology ◽  
2012 ◽  
Vol 93 (3) ◽  
pp. 511-520 ◽  
Author(s):  
Michelle H. Hersh ◽  
Rytas Vilgalys ◽  
James S. Clark

2009 ◽  
Vol 31 (2) ◽  
pp. 259 ◽  
Author(s):  
Sisay Demeku Derib ◽  
Tewodros Assefa ◽  
Belete Berhanu ◽  
Gete Zeleke

Water is one of the most important entry points to improve rural livelihoods in drought affected areas of the north-eastern Amhara region in Ethiopia. Various attempts have been made to overcome this problem by making use of different water harvesting structures. However, the choice of structures has been difficult because of a lack of empirical evidence on the relative effectiveness of the different structures. An experiment was conducted from 2002 to 2004 to compare and evaluate three different water harvesting structures (eye-brow basin, half-moon and trench) against the normal seedling plantation practice by farmers (normal pit) as a control. Data on root collar diameter (RCD), diameter at breast height (DBH), height and survival rate of Acacia saligna tree seedlings was collected at 3-month intervals after planting and annual grass biomass production was also measured. Trench and eye-brow basin structures produced 68, 95, 52 and 44% increases in RCD, DBH, height and survival rate, respectively, 15 months after planting compared with the normal pit. Trench structures increased grass biomass by 41.1% compared with normal pits. Eye-brow basins are recommended on hillsides where stone is available while trenchs could be used where stone is scarce. The results indicated that well designed water harvesting micro-basin structures can mitigate the effect of dry spell shocks on tree seedling performance and land cover rehabilitation. They were also very effective in increasing grass biomass production indicating the potential for improving livestock feed on the available barren hillsides.


2018 ◽  
Author(s):  
Varun Varma ◽  
Mahesh Sankaran

AbstractNutrient deposition can modify plant growth rates and potentially alter the susceptibility of plants to disturbance events, while also influencing properties of disturbance regimes. In mixed tree-grass ecosystems, such as savannas and tropical dry forests, tree seedling growth rates strongly influence the ability of seedlings to survive fire (i.e. post-fire seedling survival), and hence, vegetation structure and tree community composition. However the effects of nutrient deposition on the susceptibility of recruiting trees to fire are poorly quantified. In a field experiment, seedlings of multiple N-fixing and non-N-fixing tropical dry forest tree species were exposed to nitrogen (N) and phosphorus (P) fertilisation, and fire. We quantified nutrient-mediated changes in a) mean seedling growth rates; b) growth rates of the fastest growing individuals and c) post-fire seedling survival. N-fixers had substantially higher baseline post-fire seedling survival, that was unaffected by nutrient addition. Fertilisation, especially with N, increased post-fire survival probabilities in non-N-fixers by increasing the growth rates of the fastest growing individuals. These results suggest that fertilisation can lead to an increase in the relative abundance of non-N-fixers in the resprout community, and thereby, alter the community composition of tropical savanna and dry forest tree communities in the long-term.


Sign in / Sign up

Export Citation Format

Share Document