scholarly journals Avaliação da Similaridade entre as flutuações turbulentas de escalares em ambiente de lago

2020 ◽  
Vol 42 ◽  
pp. e13
Author(s):  
Fernando Augusto Silveira Armani ◽  
Nelson Luís Dias ◽  
Dornelles Vissotto Junior

This paper presents an evaluation of scalar similarity and scalar flux similarity of measurements above the water surface of the Itaipu hydroelectric reservoir. The scalars studied were: CO2 mixing ratio (rc), air temperature (θ), specific air humidity (q) and the vertical wind velocity (w). With the variance method it was found that the vertical wind velocity is in agreement with Monin-Obukhov Similarity Theory. On the other hand, the other scalars presented larger deviations in relation to the theoretical prediction. The worst results were for air temperature and mixing ratio of CO2. The most similar scalars were θ and q, with the most frequent correlation coefficient varying in the range [0.55:0.64] for measurements in unstable atmospheric conditions and in the [−0.85:−0.75] range for measurements under stable atmospheric conditions. Regarding the scalar fluxes, they presented greater similarity to each other than the scalars themselves.

2004 ◽  
Vol 60 (3) ◽  
pp. 209-214
Author(s):  
Nozomi USHIKAWA ◽  
Toru IWATA ◽  
Takeshi MIURA ◽  
Akinori OHTOU ◽  
Yoshihisa HIGUCHI ◽  
...  

1915 ◽  
Vol 35 ◽  
pp. 203-216
Author(s):  
R. C. Mossman

In the course of a large inquiry on the inter-relations between the meteorological conditions in Antarctica and the Southern Ocean, on the one hand, and those prevailing in the southern continents, more especially South America, on the other, there has come to light an interesting see-saw between the barometric pressure, air temperature, and wind velocity in the Weddell and the Boss Seas. The above inquiry, which I hope to lay before this Society shortly, refers to the eight-year period 1902–09; and since the present paper deals with the years 1902, 1903, 1911, and 1912, I have thought it better to make it the subject of a separate communication. The positions of these stations and others where observations have been made are shown on the accompanying map, for which I am indebted to Dr H. R. Mill. The figures within the rings give the number of years covered by the records at the various places.


2016 ◽  
Vol 33 (9) ◽  
pp. 1949-1966 ◽  
Author(s):  
Makoto Aoki ◽  
Hironori Iwai ◽  
Katsuhiro Nakagawa ◽  
Shoken Ishii ◽  
Kohei Mizutani

AbstractRainfall velocity, raindrop size distribution (DSD), and vertical wind velocity were simultaneously observed with 2.05- and 1.54-μm coherent Doppler lidars during convective and stratiform rain events. A retrieval method is based on identifying two separate spectra from the convolution of the aerosol and precipitation Doppler lidar spectra. The vertical wind velocity was retrieved from the aerosol spectrum peak and then the terminal rainfall velocity corrected by the vertical air motion from the precipitation spectrum peak was obtained. The DSD was derived from the precipitation spectrum using the relationship between the raindrop size and the terminal rainfall velocity. A comparison of the 1-min-averaged rainfall velocity from Doppler lidar measurements at a minimum range and that from a collocated ground-based optical disdrometer revealed high correlation coefficients of over 0.89 for both convective and stratiform rain events. The 1-min-averaged DSDs retrieved from the Doppler lidar spectrum using parametric and nonparametric methods are also in good agreement with those measured with the optical disdrometer with a correlation coefficient of over 0.80 for all rain events. To retrieve the DSD, the parametric method assumes a mathematical function for the DSD and the nonparametric method computes the direct deconvolution of the measured Doppler lidar spectrum without assuming a DSD function. It is confirmed that the Doppler lidar can retrieve the rainfall velocity and DSD during relatively heavy rain, whereas the ratio of valid data significantly decreases in light rain events because it is extremely difficult to separate the overlapping rain and aerosol peaks in the Doppler spectrum.


Sign in / Sign up

Export Citation Format

Share Document