scholarly journals Low Level Jets in the Pantanal Wetland Nocturnal Boundary Layer – Case Studies

2013 ◽  
Vol 3 (1) ◽  
pp. 32-47 ◽  
Author(s):  
Hardiney S. Martins ◽  
Leonardo D. A. Sá ◽  
Osvaldo L. L. Moraes
2019 ◽  
Vol 174 (2) ◽  
pp. 203-230 ◽  
Author(s):  
Mireia Udina ◽  
Maria Rosa Soler ◽  
Miriam Olid ◽  
Bernat Jiménez-Esteve ◽  
Joan Bech

2013 ◽  
Vol 52 (8) ◽  
pp. 1779-1802 ◽  
Author(s):  
Xiao-Ming Hu ◽  
Petra M. Klein ◽  
Ming Xue ◽  
Julie K. Lundquist ◽  
Fuqing Zhang ◽  
...  

AbstractPrevious analysis of Oklahoma City (OKC), Oklahoma, temperature data indicated that urban heat islands (UHIs) frequently formed at night and the observed UHI intensity was variable (1°–4°C). The current study focuses on identifying meteorological phenomena that contributed to the variability of nocturnal UHI intensity in OKC during July 2003. Two episodes, one with a strong UHI signature and one with a weak signature, were studied in detail using observations along with simulations with the Weather Research and Forecasting model. Mechanical mixing associated with low-level jets (LLJs) played a critical role in moderating the nocturnal UHI intensity. During nights with weak LLJs or in the absence of LLJs, vertical mixing weakened at night and strong temperature inversions developed in the rural surface layer as a result of radiative cooling. The shallow stable boundary layer (SBL < 200 m) observed under such conditions was strongly altered inside the city because rougher and warmer surface characteristics caused vertical mixing that eroded the near-surface inversion. Accordingly, temperatures measured within the urban canopy layer at night were consistently higher than at nearby rural sites of comparable height (by ~3°–4°C). During nights with strong LLJs, however, the jets facilitated enhanced turbulent mixing in the nocturnal boundary layer. As a consequence, atmospheric stability was much weaker and urban effects played a much less prominent role in altering the SBL structure; therefore, UHI intensities were smaller (<1°C) during strong LLJs. The finding that rural inversion strength can serve as an indicator for UHI intensity highlights that the structure of the nocturnal boundary layer is important for UHI assessments.


2010 ◽  
Vol 138 (8) ◽  
pp. 3142-3156 ◽  
Author(s):  
Caroline L. Bain ◽  
Douglas J. Parker ◽  
Christopher M. Taylor ◽  
Laurent Kergoat ◽  
Françoise Guichard

Abstract A set of nighttime tethered balloon and kite measurements from the central Sahel (15.2°N, 1.3°W) in August 2005 were acquired and analyzed. A composite of all the nights’ data was produced using boundary layer height to normalize measured altitudes. The observations showed some typical characteristics of nocturnal boundary layer development, notably a strong inversion after sunset and the formation of a low-level nocturnal jet later in the night. On most nights, the sampled jet did not change direction significantly during the night. The boundary layer thermodynamic structure displayed some variations from one night to the next. This was investigated using two contrasting case studies from the period. In one of these case studies (18 August 2005), the low-level wind direction changed significantly during the night. This change was captured well by two large-scale models, suggesting that the large-scale dynamics had a significant impact on boundary layer winds on this night. For both case studies, the models tended to underestimate near-surface wind speeds during the night, which is a feature that may lead to an underestimation of moisture flux northward by models.


2005 ◽  
Vol 135 (1-4) ◽  
pp. 35-43 ◽  
Author(s):  
N. Mathieu ◽  
I.B. Strachan ◽  
M.Y. Leclerc ◽  
A. Karipot ◽  
E. Pattey

2008 ◽  
Vol 47 (6) ◽  
pp. 1770-1784 ◽  
Author(s):  
Douglas O. ReVelle ◽  
E. Douglas Nilsson

Abstract The application of a simple analytic boundary layer model developed by Thorpe and Guymer did not produce good agreement with observational data for oceanic low-level jet observations even though this model has worked well for the predictions of low-level jets over continental surfaces. This failure to properly predict the boundary layer wind maxima was very puzzling because more detailed numerical boundary layer models have properly predicted these low-level oceanic wind maxima. To understand the reasons for its failure to explain the ocean observations, the authors modified the frictional terms in the horizontal linear momentum equations of Thorpe and Guymer, using a standard eddy viscosity closure technique instead of the Rayleigh friction parameterization originally used. This improvement in the modeling of the dissipation terms, which has resulted in the use of an enhanced Rayleigh friction parameterization in the horizontal momentum equations, modified the boundary layer winds such that the continental predictions remained nearly identical to those predicted previously using the Thorpe and Guymer model while the oceanic predictions have now become more representative of the measured wind speed from recent Arctic expeditions.


2013 ◽  
Vol 70 ◽  
pp. 123-130 ◽  
Author(s):  
Xiao-Ming Hu ◽  
Petra M. Klein ◽  
Ming Xue ◽  
Fuqing Zhang ◽  
David C. Doughty ◽  
...  

2015 ◽  
Vol 158 (3) ◽  
pp. 383-408 ◽  
Author(s):  
Petra M. Klein ◽  
Xiao-Ming Hu ◽  
Alan Shapiro ◽  
Ming Xue

Author(s):  
Luigi Brogno ◽  
Francesco Barbano ◽  
Laura Sandra Leo ◽  
Harindra J.S. Fernando ◽  
Silvana Di Sabatino

AbstractIn the realm of boundary-layer flows in complex terrain, low-level jets (LLJs) have received considerable attention, although little literature is available for double-nosed LLJs that remain not well understood. To this end, we use the MATERHORN dataset to demonstrate that double-nosed LLJs developing within the planetary boundary layer (PBL) are common during stable nocturnal conditions and present two possible mechanisms responsible for their formation. It is observed that the onset of a double-nosed LLJ is associated with a temporary shape modification of an already-established LLJ. The characteristics of these double-nosed LLJs are described using a refined version of identification criteria proposed in the literature, and their formation is classified in terms of two driving mechanisms. The wind-driven mechanism encompasses cases where the two noses are associated with different air masses flowing one on top of the other. The wave-driven mechanism involves the vertical momentum transport by an inertial-gravity wave to generate the second nose. The wave-driven mechanism is corroborated by the analysis of nocturnal double-nosed LLJs, where inertial-gravity waves are generated close to the ground by a sudden flow perturbation.


2017 ◽  
Vol 74 (9) ◽  
pp. 2813-2834 ◽  
Author(s):  
Evgeni Fedorovich ◽  
Jeremy A. Gibbs ◽  
Alan Shapiro

Abstract Nocturnal low-level jets (LLJs) over gently sloping terrain typical of the U.S. Great Plains are investigated by means of direct numerical simulation. Such LLJs develop in a tilted atmospheric boundary layer as a result of inertia–gravity oscillations initiated by a change of the surface thermal forcing during the evening transition. External parameters are the free-atmospheric geostrophic wind, ambient atmospheric stratification, surface buoyancy forcing, and slope angle. The governing momentum and buoyancy balance equations are written in slope-following coordinates, and solved numerically in the Boussinesq approximation. The surface forcing is prescribed in a form of surface buoyancy or buoyancy flux, both of which are slope-uniform but change in time. LLJs over slopes are contrasted with LLJs over flat terrain. Slope-induced effects essentially modify the entire structure of nocturnal LLJs. The shape of the LLJ wind profile over a slope is characterized by a sharper and larger-magnitude maximum. The presence of the slope causes the along-slope advection of environmental potential temperature during the night. This advection can reignite static instability in the LLJ flow developing after the evening transition. The resulting turbulence leads to a complete or partial remix of the boundary layer flow and drastically changes the appearance of the LLJ in terms of its shape and vertical position. A pronounced nighttime jet can also develop from the daytime convective boundary layer in the absence of any free-atmospheric geostrophic forcing. The daytime flow preconditioning, an important precursor of the nocturnal LLJ development, plays an especially important role in LLJs over a slope.


Sign in / Sign up

Export Citation Format

Share Document