scholarly journals A Combination of a 3 Step Temporal Phase Algorithm and a High Speed Interferometer System for Dynamic Profile Measurements

2012 ◽  
Vol 2 (5) ◽  
pp. 81-87
Author(s):  
David Asael Gutiérrez Hernández ◽  
Carlos Pérez López ◽  
Fernando Mendoza Santoyo
2019 ◽  
Vol 9 (7) ◽  
pp. 1458 ◽  
Author(s):  
Junpeng Xue ◽  
Qican Zhang ◽  
Chenghang Li ◽  
Wei Lang ◽  
Min Wang ◽  
...  

Structured light 3D shape metrology has become a very important technique and one of the hot research topics in 3D face recognition. However, it is still very challenging to use the digital light projector (DLP) in a 3D scanner and achieve high-speed, low-cost, small-size, and infrared-illuminated measurements. Instead of using a DLP, this paper proposes to use a galvanometer scanner to project phase-shifted fringes with a projection speed of infrared fringes up to 500 fps. Moreover, the measurement accuracy of multi-frequency (hierarchical) and multi-wavelength (heterodyne) temporal phase unwrapping approaches implemented in this system is analyzed. The measurement accuracy of the two methods is better than 0.2 mm. Comparisons are made between this method and the classical DLP approach. This method can achieve a similar accuracy and repeatability compared to the classical DLP method when a face mask is measured. The experiments on real human face indicate that this proposed method can improve the field of 3D scanning applications at a lower cost.


2021 ◽  
Vol 146 ◽  
pp. 106697
Author(s):  
Meitu Ye ◽  
Jin Liang ◽  
Leigang Li ◽  
Boxing Qian ◽  
Maodong Ren ◽  
...  

Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Sign in / Sign up

Export Citation Format

Share Document