scholarly journals The influence of environmental factors on the planktonic growth and biofilm formation of Escherichia coli

2018 ◽  
pp. 205-216 ◽  
Author(s):  
Katarina Mladenović ◽  
Mirjana Muruzović ◽  
Tanja Žugić-Petrović ◽  
Ljiljana Čomić
2010 ◽  
Vol 76 (6) ◽  
pp. 1967-1974 ◽  
Author(s):  
Shuyu Hou ◽  
Zhigang Liu ◽  
Anne W. Young ◽  
Sheron L. Mark ◽  
Neville R. Kallenbach ◽  
...  

ABSTRACT Biofilms are sessile microbial communities that cause serious chronic infections with high morbidity and mortality. In order to develop more effective approaches for biofilm control, a series of linear cationic antimicrobial peptides (AMPs) with various arginine (Arg or R) and tryptophan (Trp or W) repeats [(RW) n -NH2, where n = 2, 3, or 4] were rigorously compared to correlate their structures with antimicrobial activities affecting the planktonic growth and biofilm formation of Escherichia coli. The chain length of AMPs appears to be important for inhibition of bacterial planktonic growth, since the hexameric and octameric peptides significantly inhibited E. coli growth, while tetrameric peptide did not cause noticeable inhibition. In addition, all AMPs except the tetrameric peptide significantly reduced E. coli biofilm surface coverage and the viability of biofilm cells, when added at inoculation. In addition to inhibition of biofilm formation, significant killing of biofilm cells was observed after a 3-hour treatment of preformed biofilms with hexameric peptide. Interestingly, treatment with the octameric peptide caused significant biofilm dispersion without apparent killing of biofilm cells that remained on the surface; e.g., the surface coverage was reduced by 91.5 ± 3.5% by 200 μM octameric peptide. The detached biofilm cells, however, were effectively killed by this peptide. Overall, these results suggest that hexameric and octameric peptides are potent inhibitors of both bacterial planktonic growth and biofilm formation, while the octameric peptide can also disperse existing biofilms and kill the detached cells. These results are helpful for designing novel biofilm inhibitors and developing more effective therapeutic methods.


Biofouling ◽  
2021 ◽  
pp. 1-11
Author(s):  
Ahmed Mathlouthi ◽  
Nabil Saadaoui ◽  
Eugenia Pennacchietti ◽  
Daniela De Biase ◽  
Mossadok Ben-Attia

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Huiyi Song ◽  
Ni Lou ◽  
Jianjun Liu ◽  
Hong Xiang ◽  
Dong Shang

Abstract Background Escherichia coli (E. coli) is the principal pathogen that causes biofilm formation. Biofilms are associated with infectious diseases and antibiotic resistance. This study employed proteomic analysis to identify differentially expressed proteins after coculture of E. coli with Lactobacillus rhamnosus GG (LGG) microcapsules. Methods To explore the relevant protein abundance changes after E. coli and LGG coculture, label-free quantitative proteomic analysis and qRT-PCR were applied to E. coli and LGG microcapsule groups before and after coculture, respectively. Results The proteomic analysis characterised a total of 1655 proteins in E. coli K12MG1655 and 1431 proteins in the LGG. After coculture treatment, there were 262 differentially expressed proteins in E. coli and 291 in LGG. Gene ontology analysis showed that the differentially expressed proteins were mainly related to cellular metabolism, the stress response, transcription and the cell membrane. A protein interaction network and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis indicated that the differentiated proteins were mainly involved in the protein ubiquitination pathway and mitochondrial dysfunction. Conclusions These findings indicated that LGG microcapsules may inhibit E. coli biofilm formation by disrupting metabolic processes, particularly in relation to energy metabolism and stimulus responses, both of which are critical for the growth of LGG. Together, these findings increase our understanding of the interactions between bacteria under coculture conditions.


Author(s):  
Salim Manoharadas ◽  
Mohammad Altaf ◽  
Abdulwahed Fahad Alrefaei ◽  
Shaik Althaf Hussain ◽  
Rajesh Mamkulathil Devasia ◽  
...  

2021 ◽  
Vol 7 (4) ◽  
pp. 726-738
Author(s):  
Seyyed M. H. Abtahi ◽  
Ojaswi Aryal ◽  
Niveen S. Ismail

Zooplankton can significantly impact E. coli inactivation in wastewater, but inactivation rates are dependent on environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document