scholarly journals The impact of wood fiber surface modification on physical properties of wood-polymer composites

Tehnika ◽  
2016 ◽  
Vol 71 (5) ◽  
pp. 659-662
Author(s):  
Srdjan Perisic ◽  
Milos Petrovic ◽  
Andjelika Bjelajac ◽  
Aleksandar Marinkovic ◽  
Dusica Stojanovic ◽  
...  
2019 ◽  
Vol 136 (19) ◽  
pp. 47467 ◽  
Author(s):  
Maryam Ghorbani ◽  
Zahra Asghari Aghmashadi ◽  
Seyed Mojtaba Amininasab ◽  
Raoufeh Abedini

BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9088-9102
Author(s):  
Runzhou Huang ◽  
Xian Zhang ◽  
Zhuangzhuang Teng ◽  
Fei Yao

Glass fiber (GF) is commonly applied as a filler in the preparation of polymer composites. Due to the presence of GF, composite mechanical performance, flame resistance, and thermal performance could be greatly improved. The influence of a GF-filled polymer shell layer was investigated relative to the morphology, mechanical, thermal, and fire flammability performance of the core-half wrapped shell structured wood high-density polyethylene (HDPE) composites prepared via co-extrusion. The use of the relatively less-stiff pure HDPE with high linear coefficients of thermal expansion (LCTEs) lowered the general thermal stability and modulus of the wood polymer composites (WPCs). Flexural and thermal expansion properties were improved for the GF-filled HDPE shells in comparison to the unmodified material, enabling a well-balanced performance of this novel core–shell material. Implementation of GF-modified HDPE or unmodified HDPE layers as a shell for WPC core remarkably improved the impact resistance of the co-extruded WPCs. In comparison with composites possessing unmodified HDPE shell, the flame resistance performance of the shell layer was slightly improved in case that the GF content was below 25 wt%. A slight decrease in composite general heat release and rate was discovered in case that the GF content was greater than 25 wt%.


1981 ◽  
Vol 18 (5-6) ◽  
pp. 1185-1194
Author(s):  
S. Yoshizawa ◽  
T. Handa ◽  
M. Fukuoka ◽  
Y. Hashizume ◽  
T. Nakamura

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1004 ◽  
Author(s):  
Aleksander Hejna ◽  
Mateusz Barczewski ◽  
Jacek Andrzejewski ◽  
Paulina Kosmela ◽  
Adam Piasecki ◽  
...  

Application of lignocellulosic fillers in the manufacturing of wood polymer composites (WPCs) is a very popular trend of research, however it is still rarely observed in the case of rotational molding. The present study aimed to analyze the impact of wheat bran content (from 2.5 wt.% to 20 wt.%) on the performance of rotationally-molded composites based on a linear low-density polyethylene (LLDPE) matrix. Microscopic structure (scanning electron microscopy), as well as physico-mechanical (density, porosity, tensile performance, hardness, rebound resilience, dynamic mechanical analysis), rheological (oscillatory rheometry) and thermo-mechanical (Vicat softening temperature) properties of composites were investigated. Incorporation of 2.5 wt.% and 5 wt.% of wheat bran did not cause significant deterioration of the mechanical performance of the material, despite the presence of ‘pin-holes’ at the surface. Values of tensile strength and rebound resilience were maintained at a very similar level, while hardness was slightly decreased, which was associated with the porosity of the structure. Higher loadings resulted in the deterioration of mechanical performance, which was also expressed by the noticeable rise of the adhesion factor. For lower loadings of filler did not affect the rheological properties. However, composites with 10wt.% and 20 wt.% also showed behavior suitable for rotational molding. The presented results indicate that the manufacturing of thin-walled products based on wood polymer composites via rotational molding should be considered a very interesting direction of research.


Sign in / Sign up

Export Citation Format

Share Document