scholarly journals Particularities of tractive effort calculation of high-speed tracked vehicles with hydromechanical transmissions

2003 ◽  
Vol 51 (2) ◽  
pp. 160-170
Author(s):  
Milorad Radetic
2012 ◽  
Vol 586 ◽  
pp. 269-273
Author(s):  
Chul Su Kim ◽  
Gil Hyun Kang

To assure the safety of the power bogies for train, it is important to perform the durability analysis of reduction gear considering a variation of velocity and traction motor capability. In this study, two types of applied load histories were constructed from driving histories considering the tractive effort and the train running curves by using dynamic analysis software (MSC.ADAMS). Moreover, this study was performed by evaluating fatigue damage of the reduction gears for rolling stock using durability analysis software (MSC.FATIGUE). The finite element model for evaluating the carburizing effect on the gear surface was used for predicting the fatigue life of the gears. The results showed that the fatigue life of the reduction gear would decrease with an increasing numbers of stops at station.


Author(s):  
Chao Wang ◽  
Weijie Zhang ◽  
Guosheng Wang ◽  
Yong Guo

High power density energy regeneration is one of the effective solutions to solve the contradiction between improving the damping performance and energy consumption of active suspension. The hydraulic commutator is used to realize hydraulic rectification and hydraulic variable speed/pump/motor with few teeth difference gear pairs is used to match the speed, combined with permanent magnet motor power generation and power supply to put forward kilowatt level high power density mechanical-electrical-hydraulic regenerative suspension system for high-speed tracked vehicles. The mathematical model and fluid-solid-thermo-magnetic multiphysics coupling model are built to analyze the damping performance and regenerative characteristics of the system under passive and semi-active working conditions. The simulation results show that the damping force of the system increases with the increase of the road excitation amplitude and the semi-active control can be realized by adjusting the duty cycle with the PWM control rectifier module. The high power density mechanical-electrical-hydraulic regenerative suspension system can realize kilowatt level energy regeneration, and the regenerative efficiency is more than 50% under low-frequency excitation. The temperature rise of the system is low during operation, which is helpful to improve the reliability and service life.


2021 ◽  
Vol 47 (3) ◽  
pp. 35-48
Author(s):  
Luka Ponorac ◽  
Aleksandar Grkić ◽  
Slavko Muždeka

2019 ◽  
Vol 132 ◽  
pp. 277-292 ◽  
Author(s):  
Pingxin Wang ◽  
Xiaoting Rui ◽  
Hailong Yu

2005 ◽  
Author(s):  
Myoung-Hoon Kim ◽  
Seung-Jong Yi

2010 ◽  
Vol 158 (4) ◽  
pp. 71-83
Author(s):  
Adam DRYHUSZ ◽  
Kazimierz KOWALSKI

The maintenance system of high-speed military tracked vehicles and the graphic original interpretation of maintenance activity (mainly maintenance) are described. A modification of the maintenance system of the above-mentioned vehicles based on dependability-oriented maintenance (Reliability Cantered Maintenance – RCM) is proposed. Additionally, the use of the statistical analysis of maintenance cases and the development of Computerised Maintenance Management System – CMMC are proposed as well.


2021 ◽  
Vol 346 ◽  
pp. 03099
Author(s):  
I.A. Taratorkin ◽  
M.V. Vyaznikov ◽  
A.M. Vyaznikov

A kinematic diagram of an electromechanical transmission of a high-speed tracked vehicle with two traction electric motors, on-board gearboxes and a ZK-type differential turning mechanism, which makes it possible to effectively distribute power flows between the sides during curvilinear motion, is proposed.


Author(s):  
О.А. Наказной ◽  
◽  
С.А. Харитонов ◽  
В.А. Никитин ◽  
◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document