Durability Analysis of the Reduction Gear for High Speed Train Considering Driving Histories

2012 ◽  
Vol 586 ◽  
pp. 269-273
Author(s):  
Chul Su Kim ◽  
Gil Hyun Kang

To assure the safety of the power bogies for train, it is important to perform the durability analysis of reduction gear considering a variation of velocity and traction motor capability. In this study, two types of applied load histories were constructed from driving histories considering the tractive effort and the train running curves by using dynamic analysis software (MSC.ADAMS). Moreover, this study was performed by evaluating fatigue damage of the reduction gears for rolling stock using durability analysis software (MSC.FATIGUE). The finite element model for evaluating the carburizing effect on the gear surface was used for predicting the fatigue life of the gears. The results showed that the fatigue life of the reduction gear would decrease with an increasing numbers of stops at station.

2014 ◽  
Vol 6 ◽  
pp. 524802
Author(s):  
Yunpeng Guo ◽  
Guiqiu Song

This paper, aimed at the problems of high-speed train seat design standards that lack biomechanical analysis, analyzed the lumbar force of sitting position and verified the validity of the finite element model of human lumbar L1–L5 that had been built by reverse engineering technology. Based on the lumbar force distribution, the methods of exterior penalty and moving least square were adopted to establish a high-speed train seat equation that caters for physical ergonomics and a new high-speed train seat model was designed so as to improve the comfort for passengers.


Author(s):  
Ning He ◽  
PengFei Feng ◽  
Zi Li ◽  
Li Tan ◽  
Lan Mo ◽  
...  

The centrifugal fan blades of the high-speed train ventilation and cooling system are subjected to cyclic loading which will shorten the life of fan blades. It could cause an accident of the high-speed-train in service. In this study, a modified method based on the nominal stress method was proposed and developed for the fatigue life prediction of centrifugal fan blades. The finite element model was firstly used to analyze the mode and the stress of fan blades based on the typical material property. The fatigue life was predicted based on the physical curve, using the Miner’s cumulative damage rule to calculate total damage. In order to verify the effectiveness of this method, the experimental tests were conducted on fan blades using a fatigue bench system, which were the typical structure of the ventilation cooling system of the high-speed-train. The damage mechanisms of blades was deduced from the fracture fractographs. The ventilation good correlation was achieved between the prediction model and the actual experimental results, testifying the practicability and effectiveness of this proposed method. Thus, the research result can reduce the probability of accidents caused by the fan blade damage and improve the reliability of the ventilation cooling system of the high-speed train.


Author(s):  
Zhenguo Lu ◽  
Lirong Wan ◽  
Qingliang Zeng ◽  
Xin Zhang ◽  
Kuidong Gao

Conical picks are the key cutting components used on roadheaders, and they are replaced frequently because of the bad working conditions. Picks did not meet the fatigue life when they were damaged by abrasion, so the pick fatigue life and strength are excessive. In the paper, in order to reduce the abrasion and save the materials, structure optimization was carried out. For static analysis and fatigue life prediction, the simulation program was proposed based on mathematical models to obtain the cutting resistance. Furthermore, the finite element models for static analysis and fatigue life analysis were proposed. The results indicated that fatigue life damage and strength failure of the cutting pick would never happen. Subsequently, the initial optimization model and the finite element model of picks were developed. According to the optimized results, a new type of pick was developed based on the working and installing conditions of the traditional pick. Finally, the previous analysis methods used for traditional methods were carried out again for the new type picks. The results show that new type of pick can satisfy the strength and fatigue life requirements.


2011 ◽  
Vol 399-401 ◽  
pp. 1806-1811
Author(s):  
Yong Hong Chen ◽  
Peng Chen ◽  
Ai Qin Tian

The finite element model of the roof of aluminum high-speed train was established, double ellipsoid heat source was employed, and heat elastic-plastic theory was used to simulate welding residual stress of the component under different welding sequence based on the finite element analysis software SYSWELD. The distribution law of welding residual stress was obtained. And the effects of the welding sequence on the value and distribution of residual stress was analyzed. The numerical results showed that the simulation data agree well with experimental test data. The maximum residual stress appears in the weld seam and nearby. The residual stress value decreases far away from the welding center. Welding sequence has a significant impact on the final welding residual stress when welding the roof of aluminum body. The side whose residual stress needs to be controlled should be welded first.


2012 ◽  
Vol 184-185 ◽  
pp. 356-359
Author(s):  
Jiang Miao Yi ◽  
Dong Qiang Gao ◽  
Fei Zhang ◽  
Huan Lin

The finite element model of worktable system is created and modal analysis is made with ANSYS Workbench by taking DVG850 high-speed vertical machining center worktable system for example. We make modal analysis of single-screw strength general reinforcement worktable system and get the natural frequency and the vibration mode.Then in order to improve the system's natural frequency, the scheme of dual-screw worktable system is put forward. Also natural frequency and vibration mode is got. Finally, it is proved that the performance of dual-screw worktable system is significantly better than the single-screw one. This provides a reliable reference for further study on dynamic analysis of worktable system.


Author(s):  
Lili Zhang ◽  
Tingli Xie ◽  
Jiexiang Hu ◽  
Ping Jiang ◽  
Jasuk Koo ◽  
...  

Abstract In this study, an additive scaling function based multi-fidelity (ASF-MF) surrogate model is constructed to fast predict fatigue life as well as the stress distribution for the welded single lap joint. The influence of leg length, leg height, the width of the specimen and load in the fatigue test are taken into consideration. In the construction of the MF surrogate model, the finite element model that is calibrated with the experiment is chosen as the high-fidelity (HF) model. While the finite element model that is not calibrated with the experiment is considered as the low-fidelity (LF) model, aiming to capture the trend of the HF model. The Leave-one-out (LOO) verification method is utilized to compare the prediction performance of the ASF-MF surrogate model with that of the single-fidelity Kriging surrogate model. Results show that the ASF-MF surrogate model can better predict the fatigue life as well as the stress distribution.


Author(s):  
B Diedrichs

This work addresses crosswind stability exemplified for the German Railway Deutsche Bahn AG high-speed train ICE 2. The scope of the work is to describe the flow by means of computational fluid dynamics past the leading two cars of the train for yaw angles in the range 12.2–40.0°. Three track formations are utilized. The basic results are the set of independent aerodynamic coefficients for the lead and subsequent cars. The results are to some extent compared with experimental data for ICE 2 and also with data obtained for the Swedish high-speed train X2000. A numerical sensitivity study is undertaken to quantify differences in the above results dependent on the grid density and quality, turbulence model, numerical scheme, location of inlet and outlet boundaries, turbulence intensity and flow simulation software.


Author(s):  
Jieyi Deng ◽  
Guoqing Jing ◽  
Xiang Liu

Safety is a top priority for the development of worldwide high-speed rail systems. Ballast flying is a particular safety concern when a high-speed train is traveling above a certain speed on the ballasted track. Displaced ballast particles from the track may cause damages to rolling stock, as well as the track infrastructure and wayside structures close to the sides of way. The objective of this research is to develop a probabilistic modeling framework to estimate the probability of ballast flight on specific segments or routes, accounting for several principal risk factors. Based on the probabilistic assessment, we propose a methodology to quantify the probability of flying ballast under certain scenarios. The methodology can be further developed, ultimately enabling a normative risk assessment for flying ballast risk management.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Suchao Xie ◽  
Weilin Yang ◽  
Ping Xu

To solve the problems associated with multiple-vehicle simulations of railway vehicles including large scale modelling, long computing time, low analysis efficiency, need for high performance computing, and large storage space, the middle part of the train where no plastic deformation occurs in the vehicle body was simplified using mass and beam elements. Comparative analysis of the collisions between a single railway vehicle (including head and intermediate vehicles before, and after, simplification) and a rigid wall showed that variations in impact kinetic energy, internal energy, and impact force (after simplification) are consistent with those of the unsimplified model. Meanwhile, the finite element model of a whole high-speed train was assembled based on the simplified single-vehicle model. The numbers of nodes and elements in the simplified finite element model of the whole train were 63.4% and 61.6%, respectively, compared to those of the unsimplified model. The simplified whole train model using the above method was more accurate than the multibody model. In comparison to the full-size finite element model, it is more specific, had more rapid computational speed, and saved a large amount of computational power and storage space. Finally, the velocity and acceleration data for every car were discussed through the analysis of the collision between two simplified trains at various speeds.


Sign in / Sign up

Export Citation Format

Share Document