scholarly journals Influence of some biotic and abiotic inducers on Fusarium wilt disease incidence of lupin (Lupinus albus) on disease resistance and protein pattern

2012 ◽  
Vol 2 (2) ◽  
pp. 179-188 ◽  
Author(s):  
H.I. Mohamed
Author(s):  
M. Sangeetha ◽  
K. Indhumathi ◽  
P. S. Shanmugam

Chickpea is an important pulse crop grown during rabi season in black soil areas of Dharmapuri District. Among the various biotic and abiotic factors, the drought stress and fusarium wilt disease incidence are the major problems that reduces the chickpea yield to a greater extent. To overcome the above problems, the varieties viz., JAKI 9218 and GBM 2 were studied in comparison with farmers practice i.e., CO 4 for identification of suitable drought and disease tolerant high yielding variety for prevailing rainfed condition. The results revealed that JAKI 9218 and GBM 2 were found promising under rainfed condition and recorded the grain yield of 1008 and 933 kg/ha as compared to 808 kg/ha in CO 4. The variety JAKI 9218 proved to be superior with a yield increase of 24.7 per cent over CO 4 and 8.04 per cent over GBM 2. The pod borer and fusarium wilt disease incidence were lower in the variety JAKI 9218. The highest net income of Rs. 22158 /- and benefit cost ratio of 2.16 was realized in JAKI 9218 and the lowest net income of Rs. 13958 /- and benefit cost ratio of 1.77 was realized in farmers practice i.e., CO 4. It is concluded from the study that the chickpea variety JAKI 9218 can be recommended for large scale cultivation under rainfed condition of Dharmapuri district for realizing higher return by the farmers.


2015 ◽  
Vol 95 (4) ◽  
pp. 689-701 ◽  
Author(s):  
Samia Ageeb Akladious ◽  
George Saad Isaac ◽  
Medhat Ahmed Abu-Tahon

Akladious, S. A., Isaac, G. S. and Abu-Tahon, M. A. 2015. Induction and resistance against Fusarium wilt disease of tomato by using sweet basil (Ocimum basilicum L) extract. Can. J. Plant Sci. 95: 689–701. The antifungal activity of Ocimum basilicum (sweet basil) extract against Fusarium oxysporum f. sp. lycopersici race 3 the causal agent of tomato wilt and its ability in inducing disease resistance were studied in vivo using seed-soaking treatment before sowing. Plants were harvested at 45 and 105 d (vegetative and flowering stages) after sowing. Treatment with O. basilicum extract decreased the disease incidence from 94.70 to 18.00%. Results revealed that growth parameters and photosynthetic pigments were markedly inhibited in tomato plants in response to Fusarium wilt disease, whereas the contents of non-enzymatic and enzymatic antioxidants were increased as compared with healthy control plants. Moreover, presoaking in basil extract enhanced all the mentioned parameters in both healthy and infected plants. SDS-PAGE analysis of tomato leaves revealed that seed treated with basil extract resulted in an induction of novel protein bands during the vegetative stage. These new proteins were not detected in untreated healthy or infected control plants. Electrophoretic studies of polyphenol oxidase, esterase and malate dehydrogenase isoenzymes showed wide variations in their intensities and densities among all treatments. It seems that O. basilicum extract was able to enhance the biological control of Fusarium wilt disease of tomato.


1991 ◽  
Vol 10 (4) ◽  
Author(s):  
Hideyoshi Toyoda ◽  
Koji Horikoshi ◽  
Yasuyoshi Yamano ◽  
Seiji Ouchi

Plant Disease ◽  
2021 ◽  
Author(s):  
Muhammad Ziaur Rahman ◽  
Khairulmazmi Ahmad ◽  
Yasmeen Siddiqui ◽  
Norsazilawati Saad ◽  
Tan Geok Hun ◽  
...  

Fusarium wilt disease incited by Fusarium oxysporum f. sp. niveum (FON) is the utmost devastating soil-inhabiting fungal pathogen limiting watermelon (Citrullus lanatus) production in Malaysia and globally. The field disease survey of fusarium wilt was carried out during December 2019 and November 2020, in three major production areas (3 farmer fields per location) in Peninsular Malaysia namely, Mersing, Serdang and Kuantan and disease incidence of 30 and 45%, was recorded for each year, respectively. Infected watermelon plants showed symptoms such as vascular discoloration, brown necrotic lesions to the soil line or the crown, one-sided wilt of a plant, or a runner or the whole plant. Infected root and stem tissues, 1-2 cm pieces were surface sterilized with 0.6% NaOCl for 1 minute followed by double washing with sterile water. The disinfected tissues were air-dried and transferred onto semi-selective Komada’s medium (Komada 1975) and incubated for 5 days. The fungal colonies produced were placed on potato dextrose agar (PDA) to attain a pure culture and incubated at 25±2℃ for 15 days. The pure fungal colony was flat, round and light purple in color. Macroconidia were straight to slightly curved, 18.56-42.22 µm in length, 2.69-4.08 µm width, predominantly 3 septate and formed in sporodochia. Microconidia measured 6.16-10.86 µm in length and 2.49-3.83 µm in width, kidney-shaped, aseptate and were formed on short monophialides in false-heads. Chlamydospores were single or in pairs with smooth or rough walls, found both terminally or intercalary. To confirm their pathogenicity, two-week-old watermelon seedlings (cv. NEW BEAUTY) were dipped into spore suspension (1 ˟ 106 spores/ml) of representative isolates of JO20 (Mersing), UPM4 (Serdang) and KU41 (Kuantan) for 30 second and then moved into 10 cm diameter plastic pots containing 300 g sterilized soil mix. Disease symptoms were assessed weekly for one month. Control seedlings were immersed in sterile distilled water before transplanting. The inoculated seedlings showed typical Fusarium wilt symptoms like yellowing, stunted growth, and wilting, which is similar to the farmer field infected plants. However, the seedlings inoculated by sterile distilled water remained asymptomatic. The pathogen was successfully re-isolated from the infected seedlings onto Komada’s medium, fulfilling the Koch’s postulate. For the PCR amplification, primers EF-1 and EF-2 were used to amplify the tef1-α region. A Blastn analysis of the tef1-α sequences of the isolates JO20 (accession nos. MW315902), UPM4 (MW839560) and KU41 (MW839562) showed 100% similarity; with e-value of zero, to the reference sequences of F. oxysporum isolate FJAT-31690 (MN507110) and F. oxysporum f. sp. niveum isolate FON2 790-2 (MN057702). In Fusarium MLST database, isolates JO20, UPM4 and KU41 revealed 100% identity with the reference isolate of NRRL 22518 (accession no. FJ985265). Though isolate FJ985265 belongs to the f. sp. melonis, earlier findings had revealed Fusarium oxysporum f. sp. are naturally polyphyletic and making clusters with diverse groups of the Fusarium oxysporum species complex (O’Donnell et al. 2015). The isolates JO20, UPM4 and KU41 were identified as F. oxysporum f. sp. niveum based on the aligned sequences of tef1-α and molecular phylogenetic exploration by the maximum likelihood method. To the best of our knowledge, this is the first report of F. oxysporum f. sp. niveum as a causative pathogen of Fusarium wilt disease of watermelon in Malaysia. Malaysia enables to export watermelon all-year-round in different countries like Singapore, Hong-Kong, The United Arab Emirates (UAE), and Netherlands. The outburst of this destructive soil-borne fungal pathogen could cause hindrance to watermelon cultivation in Malaysia. Thus, growers need to choice multiple management tactics such as resistant varieties, cultural practices (soil amendments and solarization), grafting, cover crops and fungicide application to control this new pathogen.


2020 ◽  
Vol 31 (3) ◽  
pp. 29-45
Author(s):  
Hazirah Mohd Din ◽  
Osamah Rashed ◽  
Khairulmazmi Ahmad

Fusarium wilt disease is one of the most problematic and destructive disease in cucumber production. The causative agents are Fusarium oxysporum and F. solani. These pathogens are soil borne and transmitted through infested soil and water. A field survey was conducted to study the disease prevalence in the major growing areas of cucumber in Peninsular Malaysia. Field study revealed that the disease was highly prevalence in the field with the disease incidence was in the range of 10%–60%. The morphological properties of F. oxysporum are microconidia (3.8–15.7 μm × 2.9–4.9 μm), macroconidia (14.8–38.5 μm × 2.4–5.7 μm) and number of septate was 1–4. While for F. solani are microconidia (3.39–14.63 μm × 2.36–4.44 μm), macroconidia (7.22–50.46 μm × 2.43–6.14 μm) and number of septate was 1–5. Based on molecular identification had confirmed that the disease is caused by F. oxysporum and F. solani with similarity index of 99%–100% based on internal transcribed spacer (ITS) gene sequences. The pathogenicity test showed that the symptoms of Fusarium wilt disease was firstly appeared as yellowing of old leaves. Progressively, the infected plant will be wilted and finally died. The outputs of this study are highly important to establish an effective disease management programme to reduce disease prevalence and yield loss in the field.


2017 ◽  
Vol 63 (No. 1) ◽  
pp. 1-7 ◽  
Author(s):  
Cao Yun ◽  
Ma Yan ◽  
Guo Dejie ◽  
Wang Qiujun ◽  
Wang Guangfei

Biochar added to soil can improve crop growth and productivity. However, the mechanisms of crop growth improvement by biochar application are not well understood, particularly in the presence of soil-borne pathogens caused by continuous monocropping. Thus, a two-year field experiment was carried out to study the chemical and microbiological response of Lixisols (pH 5.8) to the amendment of biochar and its effect on watermelon productivity and Fusarium wilt disease incidence. Biochar was added alone or together with compost before watermelon transplanting. Mixed application of biochar with compost significantly increased watermelon yield as compared to adding compost or biochar alone. However, biochar had no effects on Fusarium wilt disease incidence in both years. Combined application of biochar with compost significantly increased contents of soil NH<sub>4</sub><sup>+</sup>-N, available phosphorus (P) and available potassium (K). Soil Biolog data indicated that the Shannon-Weaver diversity index and evenness index were increased significantly in the combined application of biochar with the compost treatment. There was a significant positive correlation between watermelon yield and soil NH<sub>4</sub><sup>+</sup>-N, available P, available K, microbial diversity or microbial evenness in the continuous watermelon monocropping system.  


2018 ◽  
Vol 46 (2) ◽  
pp. 509-516
Author(s):  
Fang WANG ◽  
Ling XIA ◽  
Shun LV ◽  
Chunxiang XU ◽  
Yuqing NIU ◽  
...  

The use of resistant cultivars is an effective method for the control of banana (Musa spp.) Fusarium wilt caused by race 4 of Fusarium oxysporum f. sp. cubense (Foc4). However, selection of disease-resistant cultivars requires large-scale field evaluations and is time-consuming. Development of early, reliable, and reproducible selection strategies can speed up this process. Sequence characterized amplified region (SCAR) markers have been widely employed in the resistant breeding of many crops. However, to date, there have been no reports about the presence of plant disease resistance-related SCAR markers in mitochondrial genome yet, which also plays a very important role in plant defenses. In the present study, a sequence-related amplified polymorphism (SRAP) marker, a specific fragment of 829 bp, was identified. This fragment could be amplified from Foc4-susceptible but not from the resistant cultivars. It was located in banana mitochondrial genome and mapped near the putative cytochrome c biogenesis ccmB-like mitochondrial protein. This fragment was then successfully converted into a SCAR marker, namely Mito-Foc-S001, which was found to be able to discriminate the resistance from susceptibility to Fusarium wilt disease of bananas with the discriminatory power of the new mark being 96.88%. Thus, this marker can be used in banana (Musa AAA Cavendish) breeding for Fusarium wilt disease resistance.


Sign in / Sign up

Export Citation Format

Share Document