Scale Experiments with the 5.5 Metre Yacht ANTIOPE

1974 ◽  
Author(s):  
Karl L. Kirkman

A program of Experiments with a series of four geometrically similar yacht hull models was conducted in the HYDRONAUTICS’ Ship Model Basin with the aim of improving engineering methods for model/full-scale correlation. The paper presents a brief review of the background of existing hydrodynamic performance prediction methods, outlines a number of scaling problems, and presents results from the family of models tested.

1983 ◽  
Vol 20 (01) ◽  
pp. 35-52
Author(s):  
Everett L. Woo ◽  
Gabor Karafiath ◽  
Gary Borda

Standardization trials were conducted on USS Oliver Hazard Perry (FFG-7) in May 1978. From the results of the trial data and the post-trial model correlation experiments which simulated the trial conditions, the powering correlation allowance of 0.00045 was obtained for the FFG-7. It should be noted that the pretrial model tests used the design correlation allowance of 0.0005 to predict full-scale powering performance. In addition, the powering performance was predicted using the "1978 ITTC Performance Prediction Method for Single Screw Ships."


1987 ◽  
Vol 109 (1) ◽  
pp. 42-49 ◽  
Author(s):  
D. S. Griffin ◽  
A. K. Dhalla ◽  
W. S. Woodward

This paper compares theoretical and experimental results for full-scale, prototypical components tested at elevated-temperatures to provide validation for inelastic analysis methods, material models, and design limits. Results are discussed for piping elbow plastic and creep buckling, creep ratcheting, and creep relaxation; nozzle creep ratcheting and weld cracking; and thermal striping fatigue. Comparisons between theory and test confirm the adequacy of components to meet design requirements, but identify specific areas where life prediction methods could be made more precise.


Energy ◽  
2020 ◽  
Vol 213 ◽  
pp. 119071
Author(s):  
Yongju Jeong ◽  
Seongmin Son ◽  
Seong Kuk Cho ◽  
Seungjoon Baik ◽  
Jeong Ik Lee

2019 ◽  
Vol 52 (11) ◽  
pp. 4763-4783 ◽  
Author(s):  
Yucong Pan ◽  
Quansheng Liu ◽  
Xingxin Peng ◽  
Qi Liu ◽  
Jianping Liu ◽  
...  

2013 ◽  
Vol 273 ◽  
pp. 167-171 ◽  
Author(s):  
Lin Jia Yang ◽  
Zuo Chang Yang ◽  
Xiao Ri Gao ◽  
Yi Han Tao

Too much ship model examinations have been carried out for understanding the ship’s manoeuvrability. A little data of full-scale ship examinations can be obtained because it is difficult and expensive for researchers. In this paper, the zig-zag test was done by a training ship equipped with a lot of measure apparatus and fin stabilizer, and then the manoeuvrability indexes K and T was been calculated by the Nomoto method and test data, finally, the effect of fin stabilizer on the manoeuvrability of the ship was obtained relying on the analyzed results.


Author(s):  
Jianhua Wang ◽  
Zhen Ren ◽  
Decheng Wan

The KRISO container ship model is used for numerical simulations to investigate hydrodynamic performance under high speeds. Unsteady Reynolds-Averaged Navier-Stokes (URANS) and delayed detached eddy simulation (DDES) approaches are used to resolve the flow field around the ship model. High-resolution Volume of Fluid (VOF) technique in OpenFOAM is used to capture the free surface. The present work focuses on the wave-breaking phenomena of high-speed ships. To study the speed effects on the phenomenon of ship bow wave breaking, three different speeds, i.e., Fn = .26, .35, and .40, are investigated for a fixed ship model in calm water. Predicted resistance and wave patterns under Fn = .26 are validated with available experimental data, and a good agreement is achieved. The breaking wave phenomena can be observed from both URANS and DDES results for Froude numbers greater than .35. And the Fn = .40 case shows more violent breaking bow waves. The process of overturning and breaking of bow wave is more complex in the DDES results, and some small-scale free surface features are also captured. The predicted bow wave is compared with the experiment conducted at the China Ship Scientific Research Center. It shows that the DDES results are more accurate. Wave profiles and vorticity field at several cross sections are presented to illustrate the relationship between bow waves and vortices. It is found that the free surface vorticity dissipates quickly in the URANS simulation, which leads to the difference compared with the DDES results.


Sign in / Sign up

Export Citation Format

Share Document