Effect of Stabilizing Fins on the Indexes of Ship Manoeuvrability

2013 ◽  
Vol 273 ◽  
pp. 167-171 ◽  
Author(s):  
Lin Jia Yang ◽  
Zuo Chang Yang ◽  
Xiao Ri Gao ◽  
Yi Han Tao

Too much ship model examinations have been carried out for understanding the ship’s manoeuvrability. A little data of full-scale ship examinations can be obtained because it is difficult and expensive for researchers. In this paper, the zig-zag test was done by a training ship equipped with a lot of measure apparatus and fin stabilizer, and then the manoeuvrability indexes K and T was been calculated by the Nomoto method and test data, finally, the effect of fin stabilizer on the manoeuvrability of the ship was obtained relying on the analyzed results.

Author(s):  
Charles Lefevre ◽  
Yiannis Constantinides ◽  
Jang Whan Kim ◽  
Mike Henneke ◽  
Robert Gordon ◽  
...  

Vortex-Induced Motion (VIM), which occurs as a consequence of exposure to strong current such as Loop Current eddies in the Gulf of Mexico, is one of the critical factors in the design of the mooring and riser systems for deepwater offshore structures such as Spars and multi-column Deep Draft Floaters (DDFs). The VIM response can have a significant impact on the fatigue life of mooring and riser components. In particular, Steel Catenary Risers (SCRs) suspended from the floater can be sensitive to VIM-induced fatigue at their mudline touchdown points. Industry currently relies on scaled model testing to determine VIM for design. However, scaled model tests are limited in their ability to represent VIM for the full scale structure since they are generally not able to represent the full scale Reynolds number and also cannot fully represent waves effects, nonlinear mooring system behavior or sheared and unsteady currents. The use of Computational Fluid Dynamics (CFD) to simulate VIM can more realistically represent the full scale Reynolds number, waves effects, mooring system, and ocean currents than scaled physical model tests. This paper describes a set of VIM CFD simulations for a Spar hard tank with appurtenances and their comparison against a high quality scaled model test. The test data showed considerable sensitivity to heading angle relative to the incident flow as well as to reduced velocity. The simulated VIM-induced sway motion was compared against the model test data for different reduced velocities (Vm) and Spar headings. Agreement between CFD and model test VIM-induced sway motion was within 9% over the full range of Vm and headings. Use of the Improved Delayed Detached Eddy Simulation (IDDES, Shur et al 2008) turbulence model gives the best agreement with the model test measurements. Guidelines are provided for meshing and time step/solver setting selection.


Author(s):  
Y. H. Tang ◽  
H. Yu ◽  
J. E. Gordon ◽  
M. Priante ◽  
D. Y. Jeong ◽  
...  

This paper describes analyses of a railroad tank car impacted at its side by a ram car with a rigid punch. This generalized collision, referred to as a shell impact, is examined using nonlinear (i.e., elastic-plastic) finite element analysis (FEA) and three-dimensional (3-D) collision dynamics modeling. Moreover, the analysis results are compared to full-scale test data to validate the models. Commercial software packages are used to carry out the nonlinear FEA (ABAQUS and LS-DYNA) and the 3-D collision dynamics analysis (ADAMS). Model results from the two finite element codes are compared to verify the analysis methodology. Results from static, nonlinear FEA are compared to closed-form solutions based on rigid-plastic collapse for additional verification of the analysis. Results from dynamic, nonlinear FEA are compared to data obtained from full-scale tests to validate the analysis. The collision dynamics model is calibrated using test data. While the nonlinear FEA requires high computational times, the collision dynamics model calculates gross behavior of the colliding cars in times that are several orders of magnitude less than the FEA models.


Author(s):  
Anthony M. Viselli ◽  
Andrew J. Goupee ◽  
Habib J. Dagher

A new floating wind turbine platform design called VolturnUS developed by the University of Maine uses innovations in materials, construction, and deployment technologies such as a concrete semisubmersible hull and a composite tower to reduce the costs of offshore wind. These novel characteristics require research and development prior to full-scale construction. This paper presents a unique offshore model testing effort aimed at derisking full-scale commercial projects by providing scaled global motion data, allowing for testing of materials representative of the full-scale system, and demonstrating full-scale construction and deployment methods. A 1:8-scale model of a 6 MW semisubmersible floating wind turbine was deployed offshore Castine, ME, in June 2013. The model includes a fully operational commercial 20 kW wind turbine and was the first grid-connected offshore wind turbine in the U.S. The testing effort includes careful selection of the offshore test site, the commercial wind turbine that produces the correct aerodynamic thrust given the wind conditions at the test site, scaling methods, model design, and construction. A suitable test site was identified that produced scaled design load cases (DLCs) prescribed by the American Bureau of Shipping (ABS) Guide for Building and Classing Floating Offshore Wind Turbines. A turbine with a small rotor diameter was selected because it produces the correct thrust load given the wind conditions at the test site. Some representative data from the test are provided in this paper. Model test data are compared directly to full-scale design predictions made using coupled aeroelastic/hydrodynamic software. Scaled VolturnUS performance data during DLCs show excellent agreement with full-scale predictive models. Model test data are also compared directly without scaling against a numerical representation of the 1:8-scale physical model for the purposes of numerical code validation. The numerical model results compare favorably with data collected from the physical model.


1985 ◽  
Vol 30 (4) ◽  
pp. 22-29 ◽  
Author(s):  
Charles N. Keys ◽  
Michael A. McVeigh ◽  
Leo Dadone ◽  
Francis J. McHugh
Keyword(s):  

2005 ◽  
Vol 8 ◽  
pp. 469-480 ◽  
Author(s):  
S. Nam ◽  
J. De Ris ◽  
Peter Wu ◽  
R. Bill

Author(s):  
John A Rockett ◽  
Masahiro Mortita ◽  
Leonard Y Cooper
Keyword(s):  

Author(s):  
Mathew C. Jacob ◽  
Michael T. Coon ◽  
John A. Blaisdell ◽  
Ruben J. Espinosa

Emergency Core Cooling System (ECCS) analyses using Loss of Coolant Accident (LOCA) codes utilize two-phase Reactor Coolant Pump (RCP) performance models formulated on the basis of data from tests conducted on the Semi-scale pump (Reference 1) operating at 60 Hz frequency. In some PWRs, the RCPs operate at a frequency of 50 Hz. This paper presents the results of an evaluation performed to determine the applicability of RCP two-phase performance models developed on the basis of data from the Semi-scale tests for analyzing ECCS performance of new generation PWRs. The evaluation addressed two major issues: (1) the applicability of the two-phase RCP performance model developed using the data from the Semi-scale pump tests (Reference 1) for full scale Pressurized Water Reactor (PWR) LOCA simulations, and (2) the relevance of the two-phase RCP performance model developed on the basis of test data for the Semi-scale pumps running at 60 Hz frequency to PWR RCPs running at 50 Hz frequency with higher specific speeds. Reviews of pump performance test data available in the open literature identified two-phase performance data appropriate for use in substantiating the validity of current PWR pump performance models. These data supported the conclusion that the two-phase head performance degradation for the Semi-scale Mod-1 pump is conservative compared to the two-phase pump performance data generated from testing of pumps representative of full scale PWR RCPs. A review of ECCS analyses results available in the literature determined that the use of the current RCP two-phase performance model (developed using the Semi-scale Mod-1 pump test data) for a typical PWR plant resulted in about a 100 °F increase in the Peak Clad Temperature (PCT) for a Large Break LOCA (LBLOCA) in comparison to the PCTs calculated using the two-phase pump performance model developed on the basis of test data for pumps representative of full scale PWR RCPs. It was determined from the current study that the frequency (50 Hz vs. 60 Hz) of the electrical power that drives the pump motor is not of much consequence for two-phase RCP performance modeling, since (1) the RCP performance model is characterized via normalized pump performance parameters, and (2) for the LBLOCA analysis of interest, the RCPs are assumed to lose power at the start of the event.


2019 ◽  
Vol 7 (5) ◽  
pp. 162 ◽  
Author(s):  
Dagang Zhao ◽  
Chunyu Guo ◽  
Jianfeng Lin ◽  
Zuotian Zhang ◽  
Xue Bai

In this study, the self-propulsion performance of a ship model with double-L-type podded propulsors was predicted. Additionally, a conversion method for the performance of a full-scale ship was established based on the correction method published by the International Towing Tank Conference (ITTC) for the scaling effect of a single podded propeller and research reports on pod tests conducted by different ship research institutes. The thrust deduction and wake fraction of the ship were also analyzed. Furthermore, the self-propulsion performance of a full-scale ship with double L-type pods was determined, the full- and model-scale ships compared in terms of their flow fields and pressure charts, and the influence of the scaling effect analyzed. In addition, the calculation results were compared with the conversion results of a full-scale ship, and the reliability of the method adopted for the performance estimation of a full-scale ship with double podded propulsors was verified. The findings reported herein can provide statistics and technical support for the design of L-type podded propulsors and their application in full-scale ships, which are of theoretical significance and practical value in the engineering domain.


Sign in / Sign up

Export Citation Format

Share Document