Prediction of Heat Leakage Through Fish Hold Wall Sections

1989 ◽  
Vol 33 (03) ◽  
pp. 229-235
Author(s):  
De-qian Wang ◽  
Edward Kolbe

Heat transfer through hold wall sections was investigated to improve prediction of heat leakage through fish hold boundaries of steel fishing vessels in the range of 14 to 32 m (45 to 105 ft). A finite-difference heat-transfer model was developed and eight fish hold wall sections representative of a 14 m (45 ft) boat were tested using the "guarded hot box" technique (ASTM C 236-80). Good agreement was obtained between the predicted and tested results. By applying the model, design curves of wall sections representative of typical West Coast steel vessels are presented.

2012 ◽  
Vol 516-517 ◽  
pp. 312-315
Author(s):  
Guang Hua Li ◽  
Hong Lei Liu ◽  
De Jian Wang

This paper has formulated a heat transfer model for analyzing the cooling properties of a heat pipe cooling device of oil-immersed electrical transformer. Based on the model, the oil temperature field of a 30 KVA oil-immersed transformer has been numerical simulated, and experiments also had been conducted. Results showed that the numerical simulation has good agreement with experiment results. Results also showed that heat pipe radiator is feasible for oil-immersed electrical transformer cooling. The model can be used to analyze the oil temperature distribution properties in an oil-immersed electrical transformer with heat pipe cooling device, and provide theoretical guide for transformer design and improvement.


Author(s):  
Anil Yuksel ◽  
Edward T. Yu ◽  
Michael Cullinan ◽  
Jayathi Murthy

The temperature evolution of nanoparticle packings on a substrate under high laser power is investigated both experimentally and via numerical simulations. Numerical modeling of temperature distributions in copper nanoparticle packings on a glass substrate is performed and results are compared with experiment under 2.6 kW/cm2 laser power. A coupled electromagnetic-heat transfer model is implemented to understand the nanoparticle temperature distribution. Very good agreement between the coupled electromagnetic-heat transfer model and the experimental results is obtained by matching the interfacial thermal conductance, G, between the nanoparticles using the experimental result in the coupled electromagnetic-heat transfer model.


2006 ◽  
Vol 116-117 ◽  
pp. 569-572
Author(s):  
Farshid Pahlevani ◽  
J. Yaokawa ◽  
M. Itamura ◽  
M. Kikuchi ◽  
O. Nagasawa ◽  
...  

Cup-cast method is a new method deals with semi-solid slurry preparation recently developed by the authors. In this method, suspension of globular solid particles in molten metal is prepared by controlling the nucleation and growth of solid-particles through the simplest and quickest techniques. In this method, heat transfer phenomenon plays an important role in governing the shape, size, and fraction of solid particles. In the current study, a heat transfer model was proposed and applied to Al-A356 alloy semi-solid slurry preparation. The heat transfer model was based on heat balance consideration between cup and slurry and it was in a good agreement with experimental results.


2003 ◽  
Vol 7 (3) ◽  
pp. 147-164
Author(s):  
Alexsandar Antic ◽  
James M. Hill

An understanding of the flow of heat in grain store structures, in particular, within the peripheral layer, is important from many industrial perspectives. To analyse the heat transfer within such regions a mathematical model known as the two-stage heat transfer model is proposed. This model makes a distinction between the air and grain within the grain bulk, and thus takes into consideration the fact that the rate of heat transfer through the grain is different to that through the interstitial air surrounding the grain. Such a model lends itself to a solution via Laplace transforms and approximate analytical results are obtained for small and large times. In addition, the Stehfest numerical algorithm is used for the inversions and very good agreement is obtained between the two approaches. The present model is compared to a previously developed double-diffusivity heat transfer model by the authors, and good agreement is obtained. At present, no experimental data is available to validate the model as it is very difficult to measure the air and grain temperatures separately, particularly in the peripheral layer. The proposed model provides insight into the potential difference existing between the air and grain temperatures.


2011 ◽  
Vol 338 ◽  
pp. 572-575
Author(s):  
Gui Jie Zhang ◽  
Kang Li ◽  
Ying Zi Wang

The heat transfer model was developed and the heat transfer of the strip coil stay in the hot coil box was analyzed. The temperature distribution of the strip coil was investigated use the model. The measured results are in good agreement with the calculated ones, has a guiding significance to further improve the technology.


2004 ◽  
Vol 127 (3) ◽  
pp. 555-563 ◽  
Author(s):  
Jie Luo ◽  
Albert J. Shih

The explicit finite difference formulation of an inverse heat transfer model to calculate the heat flux generated by induction is developed. The experimentally measured temperature data are used as the input for the inverse heat transfer model. This model is particularly suitable for a workpiece with low cross section Biot number. Induction heating experiments are carried out using a carbon steel rod. The finite difference method and thermocouple temperature measurements are applied to estimate the induction heat flux and workpiece temperature. Compared to measured temperatures, the accuracy and limitation of proposed method is demonstrated. The effect of nonuniform temperature distribution, particularly in the heating region during the induction heating, is studied. Analysis results validate the assumption to use the uniform temperature in a cross section for the inverse heat transfer solution of induction heat flux. Sensitivity to the grid spacing, thermocouple location, and thermophysical properties are also studied.


2005 ◽  
Author(s):  
James E. Hertel ◽  
Jared R. Suster ◽  
Justin R. Hawley ◽  
Xiaodi Huang

2018 ◽  
Vol 1 (1) ◽  
pp. 142-150
Author(s):  
Murat Tunc ◽  
Ayse Nur Esen ◽  
Doruk Sen ◽  
Ahmet Karakas

A theoretical post-dryout heat transfer model is developed for two-phase dispersed flow, one-dimensional vertical pipe in a post-CHF regime. Because of the presence of average droplet diameter lower bound in a two-phase sparse flow. Droplet diameter is also calculated. Obtained results are compared with experimental values. Experimental data is used two-phase flow steam-water in VVER-1200, reactor coolant system, reactor operating pressure is 16.2 MPa. On heater rod surface, dryout was detected as a result of jumping increase of the heater rod surface temperature. Results obtained display lower droplet dimensions than the experimentally obtained values.


Sign in / Sign up

Export Citation Format

Share Document