An Analytical Model to Predict the Bending Behavior of Unbonded Flexible Pipes

2013 ◽  
Vol 57 (03) ◽  
pp. 171-177
Author(s):  
Leilei Dong ◽  
Yi Huang ◽  
Qi Zhang ◽  
Gang Liu

Analytical formulations are presented to determine the bending moment-curvature relationship of a helical layer in unbonded flexible pipes. Explicit expressions describing the variation of both bending stiffness and moment as a function of the applied curvature are given. The approach takes into account the nonlinearity of the response caused by the interlayer slip. The contribution of local bending and torsion of individual helical elements to the bending behavior of helical layers is included. Theoretical results for a typical unbonded flexible pipe using the nonlinear formulation for helical layers are compared with experimental data from the available literature. Encouraging correlations are found and the importance of the initial interlayer pressures is seen. The influence of local bending and torsion of individual helical elements on the bending behavior of the entire pipe is also evaluated. The results show that the inclusion of this local behavior significantly influences the full-slip bending stiffness.

Author(s):  
Yutian Lu ◽  
Huibin Yan ◽  
Yong Bai ◽  
Peng Cheng

The bending behavior of unbonded flexible pipe is governed by the response of the helical wires in the tensile armor to bending. The behavior of the helical wire, especially the axial strain, is influenced by the slip mechanism as a result of an increasing curvature under bending. In the present paper, two limit curves are considered with a certain curvature. A 3-D finite element model using ABAQUS is developed to simulate the practical behavior of the helical wires under bending. By comparing the FEA and theoretical results, a basic conclusion about the real slip path of the helical wire between two limit curves is introduced. A hysteretic bending moment-curvature relationship induced by the slip mechanism is obtained from the finite element model as well.


Author(s):  
Yifan Gao ◽  
Shan Jin ◽  
Peng Cheng ◽  
Peihua Han ◽  
Yong Bai

Abstract Fiberglass reinforced flexible pipe (FRFP) is a kind of composite thermoplastic pipe, which has many advantages compared to boned flexible pipes. This paper describes an analysis of the mechanical behavior of FRFP under bending. The bending behavior of FRFP was investigated by experimental, analytical and numerical methods. Firstly, this paper presents experimental studies of three 10-layer FRFP in a typical four-point bending test. Curvature-bending moment relations were recorded during the test. Then, based on the nonlinear ring theory and the principle of virtual work, a simplified method was proposed to study the mechanical behavior of FRFP. In addition, a finite element model (FEM) including reinforced layers and high density polyethylene (HDPE) layers was established to simulate the HDPE layers and reinforced layers, respectively. The result of Curvature-bending moment relations obtained from three methods agree well with each other, which proves that the simplified analytical model and FEM are accurate and reliable. The conclusions of this paper could be useful to manufacturing engineers.


2013 ◽  
Vol 652-654 ◽  
pp. 1514-1519
Author(s):  
Zhi Bo Li ◽  
Hui Xu ◽  
Gui Zhen Zhang

Due to the complex structure and nonuniform material of unbonded flexible pipes, an elastic thin-walled cylinder model and a helical steel strip model were established respectively to simulate different layers based on the specific structure form and parameters. Quasi-static incremental load was adopted to identify the structural parameters which had significant effects on the axial, radial and bending behavior of the pipes during the complex deformation. Sensitivity of these parameters were also analysed. The conclusion in this paper could provide guaidance for the design of unbonded flexible pipe.


Author(s):  
Jan Rytter

The future water depth capabilities for unbonded flexible pipes is being pushed by NKT Flexibles I/S through the development of an innovative flexible pipe structure, taking full advantage of the material characteristics of metallic, polymeric and fibre reinforced materials. The fluid tight liner and possible insulation of this pipe structure are supported by an inner armour, capable of carrying the external hydrostatic pressure, clamp and crushing loads, as well as axial compression load, and an outer armour, consisting of two cross wound layers of carbon/epoxy composites, carrying the internal pressure as well as end cap forces and applied tension. A permeable and radially flexible outer layer protects the composite armour. Combining known and well-proven flexible pipe technologies and new solutions for materials, structure and functionality of the flexible pipe, positions this future product outside the present industry standards for flexible pipes, e.g. API-17J. The analysis tools used for the conventional flexible pipes are validated by NKT according to the API-17J specification. The API-17J describes load cases and corresponding allowable utilization ratios, stated as design criteria. However, this approach is not directly applicable to the composite pipe, where the same analysis tools will be used, but the material in one of the two primary load bearing layers is made of fibre reinforced polymer, a material class not covered by the API allowable utilization factors. The DNV offshore standard DNV-OS-C501 considers any offshore structure in which the load bearing material is a composite. An accompanying Recommended Practice DNV-RP-F202 for composite risers has also been issued, but is not applicable to the composite flexible pipe. The design equations of the DNV standard are formulated in the so-called Load and Resistance Factor Design (LRFD) format, where partial safety factors are applied to the load effects and to the resistance variables that enter the design equations. The DNV standard DNV-OS-C501 covers composite materials and composite metal interfaces of a structure, metal parts should be designed according to other relevant standards. The API standard can therefore be used for the metal parts. One of the challenges in using this combined approach is the different ways loads are defined in the two standards. In short, this will result in a conventional API design check of the inner armour, the polymer layers, and the secondary layers, whereas the composite tensile armour, special intermediate layers and the interfaces will be analyzed with composite specific tools based on the criteria derived from the DNV standard. The qualification procedure is described and exemplified in the following.


2013 ◽  
Vol 57 (3) ◽  
pp. 171-177 ◽  
Author(s):  
Leilei Dong ◽  
Yi Huang ◽  
Qi Zhang ◽  
Gang Liu

Author(s):  
Upul S. Fernando ◽  
Andrew P. Roberts ◽  
Michelle Davidson

Abstract Carcass, the innermost layer of a flexible pipe structure is designed to prevent the collapse of the pressure sheath due to external pressure. Weakness, damage or failure of the carcass layer can result in collapse with associated loss of production and potentially serious risk to pipe integrity and hydrocarbon leakage to the environment. Avoiding carcass failure in service is therefore an essential consideration during the design of unbonded flexible pipes. Carcass failure is rare in service. This paper highlights the three possible failure modes and presents further analysis on the fatigue failure mode, relevant to dynamic service. Two key features of carcass manufacture are identified as causes for dynamic stress; locking of the carcass profile due to extended pitch and polymer ingress within the carcass cavity. Guidelines for the design of carcass profiles, setting safe pitch limits and appropriate barrier profile controls to mitigate carcass fatigue failure in dynamic service are presented.


2013 ◽  
Vol 658 ◽  
pp. 481-486
Author(s):  
Zhi Bo Li ◽  
Hui Xu ◽  
Gui Zhen Zhang

In this paper, the nonlinear relationship between the bending moment and curvature of non-bonded flexible pipes was studied. It was found that the relation was a function of internal and external pressure, axial force, and bending moment load. The model used in this paper took into consideration of the flexural, tensile and torsional strength of layers as well as the frictions between them. Symmetrical axial load was first applied, and then the bending load. Due to friction, the response of the unbonded flexible pipes is hysteretic to the loads. In conclusion, the response of unbonded flexible pipes are both related to its own structural properties and external loads.Coupling factors of different conditions should also be considered.


Author(s):  
Simon Péronne ◽  
Cécile Izarn ◽  
Pascal Estrier ◽  
Olivier Caro ◽  
Jean-Marc Leroy ◽  
...  

The flexible riser global behavior is of major importance during the design phase of a flexible riser system configuration. Flexible riser design is an optimization loop involving several iterations. The flexible riser main mechanical characteristics are used as inputs into the global dynamic analysis. The dynamic analysis is performed to derive global loads that are then used for the flexible riser design. At each step of the riser design optimization loop, from the global configuration to flexible pipe cross-section, accurate knowledge of the flexible pipe mechanical characteristics is essential. One of the main mechanical characteristics of a flexible riser that drives its global behavior is its bending stiffness. Considering the flexible riser composition, the bending stiffness is much lower than its torsional and axial stiffnesses and therefore has a larger influence on its static and dynamic behavior. In order to simplify the global analysis, the first approach considered uses a linear bending stiffness. In this case, only the contribution of the polymer layers of the flexible is accounted for. The linear bending stiffness is therefore only impacted by thermal loads. In reality, because of the friction that can occur between the armor layers, the bending behavior is non-linear and the relation between bending moment versus curvature is hysteretic. This hysteretic behavior induces energy dissipation and therefore, when accounted in the global modeling of the riser, reduces the curvature response of the flexible riser. Technip and IFPEN previously developed a model to describe mechanical flexible pipe characteristics. This model is based on the finite difference method. To ensure the accuracy of stress prediction of this method in response to external loads (tension, curvature, internal pressure and external pressure), results are validated with both experimental and finite element methods. This paper presents the theory of bending behavior of a flexible riser and explains how the model is used to derive a hysteric bending model. The matrix of experimental tests campaigns performed on flexible pipe to characterize bending behavior of flexible risers, and comparisons with hysteretic behavior predictions from the FEA and finite difference models are presented. Finally results from experimental tests, FEA and calculated hysteretic bending models are implemented into the dynamic analysis model of a flexible riser system. Then the global behaviors of the flexible pipe configuration, with the different properties, are compared.


2020 ◽  
Vol 17 (5) ◽  
pp. 1400-1410
Author(s):  
Jun-Peng Liu ◽  
Murilo Augusto Vaz ◽  
Rong-Qi Chen ◽  
Meng-Lan Duan ◽  
Irving Hernandez

Abstract Axial structural damping behavior induced by internal friction and viscoelastic properties of polymeric layers may have an inevitable influence on the global analysis of flexible pipes. In order to characterize this phenomenon and axial mechanical responses, a full-scale axial tensile experiment on a complex flexible pipe is conducted at room temperature, in which oscillation forces at different frequencies are applied on the sample. The parameters to be identified are axial strains which are measured by three kinds of instrumentations: linear variable differential transformer, strain gauge and camera united particle-tracking technology. The corresponding plots of axial force versus axial elongation exhibit obvious nonlinear hysteretic relationship. Consequently, the loss factor related to the axial structural damping behavior is found, which increases as the oscillation loading frequency grows. The axial strains from the three measurement systems in the mechanical experiment indicate good agreement, as well as the values of the equivalent axial stiffness. The damping generated by polymeric layers is relatively smaller than that caused by friction forces. Therefore, it can be concluded that friction forces maybe dominate the axial structural damping, especially on the conditions of high frequency.


Author(s):  
Michelle Davidson ◽  
Upul S. Fernando ◽  
John Hall ◽  
Brendon O’Donnell ◽  
James Latto ◽  
...  

The polymer barrier is the most important component in unbonded flexible pipe, providing the leak-tight boundary for transporting hydrocarbon medium. Premature failure of the barrier during service can be costly and may lead to disastrous environmental consequences. Design of the barrier for 25 years’ service integrity is therefore a major requirement in the flexible pipe design process. However, the API design code does not give a specific procedure for the design of the barrier and is mainly concerned with the design of other layers in the pipe which are intended to provide integrity to the polymer barrier. The selection of barrier material depends on many factors including the service temperature/pressure range and pipe bending requirements. Polyvinylidene fluoride (PVDF) is used as a barrier material in cases where high pressure and relatively high temperature applications are involved. However, a hard polymer such as PVDF can be susceptible to crazing and cracking under specific conditions and therefore the use of PVDF in flexible pipe barriers requires critical consideration of the above issues. This paper discusses the general design requirements of a single layer barrier, and different barriers in relation to static and dynamic applications. The details of a qualification test program performed to establish service integrity of single layer Solef 60512 PVDF barriers is discussed. The unique testing facilities developed to test the integrity of the barrier are presented.


Sign in / Sign up

Export Citation Format

Share Document